File size: 2,755 Bytes
abd15df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import pytorch_lightning as L
from torch.utils.data import DataLoader, random_split
import torch
import time


class ImageDataModule(L.LightningDataModule):
    def __init__(

        self,

        train_dataset,

        val_dataset,

        test_dataset,

        global_batch_size,

        num_workers,

        num_nodes=1,

        num_devices=1,

        val_proportion=0.1,

    ):
        super().__init__()
        self._builders = {
            "train": train_dataset,
            "val": val_dataset,
            "test": test_dataset,
        }
        self.num_workers = num_workers
        self.batch_size = global_batch_size // (num_nodes * num_devices)
        print(f"Each GPU will receive {self.batch_size} images")
        self.val_proportion = val_proportion

    @property
    def num_classes(self):
        if hasattr(self, "train_dataset"):
            return self.train_dataset.num_classes
        else:
            return self._builders["train"]().num_classes

    def setup(self, stage=None):
        """Setup the datamodule.

        Args:

            stage (str): stage of the datamodule

                Is be one of "fit" or "test" or None

        """
        print("Stage", stage)
        start_time = time.time()
        if stage == "fit" or stage is None:
            self.train_dataset = self._builders["train"]()
            self.val_dataset = self._builders["val"]()
            print(f"Train dataset size: {len(self.train_dataset)}")
            print(f"Val dataset size: {len(self.val_dataset)}")
        else:
            self.test_dataset = self._builders["test"]()
            print(f"Test dataset size: {len(self.test_dataset)}")
        end_time = time.time()
        print(f"Setup took {(end_time - start_time):.2f} seconds")

    def train_dataloader(self):
        return DataLoader(
            self.train_dataset,
            batch_size=self.batch_size,
            shuffle=True,
            pin_memory=False,
            drop_last=True,
            num_workers=self.num_workers,
            collate_fn=self.train_dataset.collate_fn_density,
        )

    def val_dataloader(self):
        return DataLoader(
            self.val_dataset,
            batch_size=self.batch_size,
            shuffle=False,
            pin_memory=False,
            num_workers=self.num_workers,
            collate_fn=self.val_dataset.collate_fn,
        )

    def test_dataloader(self):
        return DataLoader(
            self.test_dataset,
            batch_size=self.batch_size,
            shuffle=False,
            pin_memory=False,
            num_workers=self.num_workers,
            collate_fn=self.test_dataset.collate_fn,
        )