Location_Predictor / models /eval_best_model.py
yunusserhat's picture
Create APP
894bc0c verified
import os
from typing import Any
import pytorch_lightning as L
import torch
from hydra.utils import instantiate
from models.huggingface import Geolocalizer
class EvalModule(L.LightningModule):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
os.chdir(cfg.network.root_dir)
self.model = Geolocalizer.from_pretrained('osv5m/baseline')
self.test_metrics = instantiate(cfg.test_metrics)
def training_step(self, batch, batch_idx):
pred = self.model(batch)
pass
@torch.no_grad()
def validation_step(self, batch, batch_idx):
pred = self.model(batch)
pass
def on_validation_epoch_end(self):
pass
@torch.no_grad()
def test_step(self, batch, batch_idx):
pred = self.model.forward_tensor(batch)
self.test_metrics.update({"gps": pred}, batch)
def on_test_epoch_end(self):
metrics = self.test_metrics.compute()
for metric_name, metric_value in metrics.items():
self.log(
f"test/{metric_name}",
metric_value,
sync_dist=True,
on_step=False,
on_epoch=True,
)
def lr_scheduler_step(self, scheduler, metric):
scheduler.step(self.global_step)
def get_parameter_names(model, forbidden_layer_types):
"""
Returns the names of the model parameters that are not inside a forbidden layer.
Taken from HuggingFace transformers.
"""
result = []
for name, child in model.named_children():
result += [
f"{name}.{n}"
for n in get_parameter_names(child, forbidden_layer_types)
if not isinstance(child, tuple(forbidden_layer_types))
]
# Add model specific parameters (defined with nn.Parameter) since they are not in any child.
result += list(model._parameters.keys())
return result