|
from abc import abstractmethod |
|
|
|
import math |
|
|
|
import numpy as np |
|
import torch as th |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .fp16_util import convert_module_to_f16, convert_module_to_f32 |
|
from .basic_ops import ( |
|
linear, |
|
conv_nd, |
|
avg_pool_nd, |
|
zero_module, |
|
normalization, |
|
timestep_embedding, |
|
) |
|
from .swin_transformer import BasicLayer |
|
|
|
try: |
|
import xformers |
|
import xformers.ops as xop |
|
XFORMERS_IS_AVAILBLE = True |
|
except: |
|
XFORMERS_IS_AVAILBLE = False |
|
|
|
class TimestepBlock(nn.Module): |
|
""" |
|
Any module where forward() takes timestep embeddings as a second argument. |
|
""" |
|
|
|
@abstractmethod |
|
def forward(self, x, emb): |
|
""" |
|
Apply the module to `x` given `emb` timestep embeddings. |
|
""" |
|
|
|
class TimestepEmbedSequential(nn.Sequential, TimestepBlock): |
|
""" |
|
A sequential module that passes timestep embeddings to the children that |
|
support it as an extra input. |
|
""" |
|
|
|
def forward(self, x, emb): |
|
for layer in self: |
|
if isinstance(layer, TimestepBlock): |
|
x = layer(x, emb) |
|
else: |
|
x = layer(x) |
|
return x |
|
|
|
class Upsample(nn.Module): |
|
""" |
|
An upsampling layer with an optional convolution. |
|
:param channels: channels in the inputs and outputs. |
|
:param use_conv: a bool determining if a convolution is applied. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
upsampling occurs in the inner-two dimensions. |
|
""" |
|
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.dims = dims |
|
if use_conv: |
|
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1) |
|
|
|
def forward(self, x): |
|
assert x.shape[1] == self.channels |
|
if self.dims == 3: |
|
x = F.interpolate( |
|
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" |
|
) |
|
else: |
|
x = F.interpolate(x, scale_factor=2, mode="nearest") |
|
if self.use_conv: |
|
x = self.conv(x) |
|
return x |
|
|
|
class Downsample(nn.Module): |
|
""" |
|
A downsampling layer with an optional convolution. |
|
:param channels: channels in the inputs and outputs. |
|
:param use_conv: a bool determining if a convolution is applied. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
downsampling occurs in the inner-two dimensions. |
|
""" |
|
def __init__(self, channels, use_conv, dims=2, out_channels=None): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.dims = dims |
|
stride = 2 if dims != 3 else (1, 2, 2) |
|
if use_conv: |
|
self.op = conv_nd( |
|
dims, self.channels, self.out_channels, 3, stride=stride, padding=1 |
|
) |
|
else: |
|
assert self.channels == self.out_channels |
|
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) |
|
|
|
def forward(self, x): |
|
assert x.shape[1] == self.channels |
|
return self.op(x) |
|
|
|
class ResBlock(TimestepBlock): |
|
""" |
|
A residual block that can optionally change the number of channels. |
|
:param channels: the number of input channels. |
|
:param emb_channels: the number of timestep embedding channels. |
|
:param dropout: the rate of dropout. |
|
:param out_channels: if specified, the number of out channels. |
|
:param use_conv: if True and out_channels is specified, use a spatial |
|
convolution instead of a smaller 1x1 convolution to change the |
|
channels in the skip connection. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. |
|
:param up: if True, use this block for upsampling. |
|
:param down: if True, use this block for downsampling. |
|
""" |
|
def __init__( |
|
self, |
|
channels, |
|
emb_channels, |
|
dropout, |
|
out_channels=None, |
|
use_conv=False, |
|
use_scale_shift_norm=False, |
|
dims=2, |
|
up=False, |
|
down=False, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.emb_channels = emb_channels |
|
self.dropout = dropout |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.use_scale_shift_norm = use_scale_shift_norm |
|
|
|
self.in_layers = nn.Sequential( |
|
normalization(channels), |
|
nn.SiLU(), |
|
conv_nd(dims, channels, self.out_channels, 3, padding=1), |
|
) |
|
|
|
self.updown = up or down |
|
|
|
if up: |
|
self.h_upd = Upsample(channels, False, dims) |
|
self.x_upd = Upsample(channels, False, dims) |
|
elif down: |
|
self.h_upd = Downsample(channels, False, dims) |
|
self.x_upd = Downsample(channels, False, dims) |
|
else: |
|
self.h_upd = self.x_upd = nn.Identity() |
|
|
|
self.emb_layers = nn.Sequential( |
|
nn.SiLU(), |
|
linear( |
|
emb_channels, |
|
2 * self.out_channels if use_scale_shift_norm else self.out_channels, |
|
), |
|
) |
|
self.out_layers = nn.Sequential( |
|
normalization(self.out_channels), |
|
nn.SiLU(), |
|
nn.Dropout(p=dropout), |
|
zero_module( |
|
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) |
|
), |
|
) |
|
|
|
if self.out_channels == channels: |
|
self.skip_connection = nn.Identity() |
|
elif use_conv: |
|
self.skip_connection = conv_nd( |
|
dims, channels, self.out_channels, 3, padding=1 |
|
) |
|
else: |
|
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) |
|
|
|
def forward(self, x, emb): |
|
if self.updown: |
|
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] |
|
h = in_rest(x) |
|
h = self.h_upd(h) |
|
x = self.x_upd(x) |
|
h = in_conv(h) |
|
else: |
|
h = self.in_layers(x) |
|
emb_out = self.emb_layers(emb).type(h.dtype) |
|
while len(emb_out.shape) < len(h.shape): |
|
emb_out = emb_out[..., None] |
|
if self.use_scale_shift_norm: |
|
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] |
|
scale, shift = th.chunk(emb_out, 2, dim=1) |
|
h = out_norm(h) * (1 + scale) + shift |
|
h = out_rest(h) |
|
else: |
|
h = h + emb_out |
|
h = self.out_layers(h) |
|
return self.skip_connection(x) + h |
|
|
|
def count_flops_attn(model, _x, y): |
|
""" |
|
A counter for the `thop` package to count the operations in an |
|
attention operation. |
|
Meant to be used like: |
|
macs, params = thop.profile( |
|
model, |
|
inputs=(inputs, timestamps), |
|
custom_ops={QKVAttention: QKVAttention.count_flops}, |
|
) |
|
""" |
|
b, c, *spatial = y[0].shape |
|
num_spatial = int(np.prod(spatial)) |
|
matmul_ops = 2 * b * (num_spatial ** 2) * c |
|
model.total_ops += th.DoubleTensor([matmul_ops]) |
|
|
|
class AttentionBlock(nn.Module): |
|
""" |
|
An attention block that allows spatial positions to attend to each other. |
|
Originally ported from here, but adapted to the N-d case. |
|
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. |
|
""" |
|
def __init__( |
|
self, |
|
channels, |
|
num_heads=1, |
|
num_head_channels=-1, |
|
use_new_attention_order=False, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
if num_head_channels == -1: |
|
self.num_heads = num_heads |
|
else: |
|
assert ( |
|
channels % num_head_channels == 0 |
|
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" |
|
self.num_heads = channels // num_head_channels |
|
self.norm = normalization(channels) |
|
self.qkv = conv_nd(1, channels, channels * 3, 1) |
|
if use_new_attention_order: |
|
|
|
self.attention = QKVAttention(self.num_heads) |
|
else: |
|
|
|
self.attention = QKVAttentionLegacy(self.num_heads) |
|
|
|
self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) |
|
|
|
def forward(self, x): |
|
b, c, *spatial = x.shape |
|
x = x.reshape(b, c, -1) |
|
qkv = self.qkv(self.norm(x)) |
|
h = self.attention(qkv) |
|
h = self.proj_out(h) |
|
return (x + h).reshape(b, c, *spatial) |
|
|
|
class QKVAttentionLegacy(nn.Module): |
|
""" |
|
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping |
|
""" |
|
|
|
def __init__(self, n_heads): |
|
super().__init__() |
|
self.n_heads = n_heads |
|
|
|
def forward(self, qkv): |
|
""" |
|
Apply QKV attention. |
|
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. |
|
:return: an [N x (H * C) x T] tensor after attention. |
|
""" |
|
bs, width, length = qkv.shape |
|
assert width % (3 * self.n_heads) == 0 |
|
ch = width // (3 * self.n_heads) |
|
if XFORMERS_IS_AVAILBLE: |
|
|
|
qkv = qkv.reshape(bs, self.n_heads, ch * 3, length).permute(0, 3, 1, 2).to(memory_format=th.contiguous_format) |
|
q, k, v = qkv.split(ch, dim=3) |
|
a = xop.memory_efficient_attention(q, k, v, p=0.0) |
|
out = a.permute(0, 2, 3, 1).to(memory_format=th.contiguous_format).reshape(bs, -1, length) |
|
else: |
|
|
|
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) |
|
scale = 1 / math.sqrt(math.sqrt(ch)) |
|
weight = th.einsum( |
|
"bct,bcs->bts", q * scale, k * scale |
|
) |
|
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) |
|
a = th.einsum("bts,bcs->bct", weight, v) |
|
out = a.reshape(bs, -1, length) |
|
return out |
|
|
|
@staticmethod |
|
def count_flops(model, _x, y): |
|
return count_flops_attn(model, _x, y) |
|
|
|
class QKVAttention(nn.Module): |
|
""" |
|
A module which performs QKV attention and splits in a different order. |
|
""" |
|
|
|
def __init__(self, n_heads): |
|
super().__init__() |
|
self.n_heads = n_heads |
|
|
|
def forward(self, qkv): |
|
""" |
|
Apply QKV attention. |
|
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. |
|
:return: an [N x (H * C) x T] tensor after attention. |
|
""" |
|
bs, width, length = qkv.shape |
|
assert width % (3 * self.n_heads) == 0 |
|
ch = width // (3 * self.n_heads) |
|
if XFORMERS_IS_AVAILBLE: |
|
|
|
qkv = qkv.reshape(bs, self.n_heads, ch * 3, length).permute(0, 3, 1, 2).to(memory_format=th.contiguous_format) |
|
q, k, v = qkv.split(ch, dim=3) |
|
a = xop.memory_efficient_attention(q, k, v, p=0.0) |
|
out = a.permute(0, 2, 3, 1).to(memory_format=th.contiguous_format).reshape(bs, -1, length) |
|
else: |
|
q, k, v = qkv.chunk(3, dim=1) |
|
scale = 1 / math.sqrt(math.sqrt(ch)) |
|
weight = th.einsum( |
|
"bct,bcs->bts", |
|
(q * scale).view(bs * self.n_heads, ch, length), |
|
(k * scale).view(bs * self.n_heads, ch, length), |
|
) |
|
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) |
|
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)) |
|
out = a.reshape(bs, -1, length) |
|
return out |
|
|
|
@staticmethod |
|
def count_flops(model, _x, y): |
|
return count_flops_attn(model, _x, y) |
|
|
|
class UNetModel(nn.Module): |
|
""" |
|
The full UNet model with attention and timestep embedding. |
|
:param in_channels: channels in the input Tensor. |
|
:param model_channels: base channel count for the model. |
|
:param out_channels: channels in the output Tensor. |
|
:param num_res_blocks: number of residual blocks per downsample. |
|
:param attention_resolutions: a collection of downsample rates at which |
|
attention will take place. May be a set, list, or tuple. |
|
For example, if this contains 4, then at 4x downsampling, attention |
|
will be used. |
|
:param dropout: the dropout probability. |
|
:param channel_mult: channel multiplier for each level of the UNet. |
|
:param conv_resample: if True, use learned convolutions for upsampling and |
|
downsampling. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. |
|
:param num_classes: if specified (as an int), then this model will be |
|
class-conditional with `num_classes` classes. |
|
:param num_heads: the number of attention heads in each attention layer. |
|
:param num_heads_channels: if specified, ignore num_heads and instead use |
|
a fixed channel width per attention head. |
|
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism. |
|
:param resblock_updown: use residual blocks for up/downsampling. |
|
:param use_new_attention_order: use a different attention pattern for potentially |
|
increased efficiency. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
image_size, |
|
in_channels, |
|
model_channels, |
|
out_channels, |
|
num_res_blocks, |
|
attention_resolutions, |
|
cond_lq=True, |
|
dropout=0, |
|
channel_mult=(1, 2, 4, 8), |
|
conv_resample=True, |
|
dims=2, |
|
num_classes=None, |
|
use_fp16=False, |
|
num_heads=1, |
|
num_head_channels=-1, |
|
use_scale_shift_norm=False, |
|
resblock_updown=False, |
|
use_new_attention_order=False, |
|
): |
|
super().__init__() |
|
|
|
if isinstance(num_res_blocks, int): |
|
num_res_blocks = [num_res_blocks,] * len(channel_mult) |
|
else: |
|
assert len(num_res_blocks) == len(channel_mult) |
|
self.num_res_blocks = num_res_blocks |
|
|
|
self.image_size = image_size |
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
self.out_channels = out_channels |
|
self.attention_resolutions = attention_resolutions |
|
self.dropout = dropout |
|
self.channel_mult = channel_mult |
|
self.conv_resample = conv_resample |
|
self.num_classes = num_classes |
|
self.dtype = th.float16 if use_fp16 else th.float32 |
|
self.num_heads = num_heads |
|
self.num_head_channels = num_head_channels |
|
self.cond_lq = cond_lq |
|
|
|
time_embed_dim = model_channels * 4 |
|
self.time_embed = nn.Sequential( |
|
linear(model_channels, time_embed_dim), |
|
nn.SiLU(), |
|
linear(time_embed_dim, time_embed_dim), |
|
) |
|
|
|
if self.num_classes is not None: |
|
self.label_emb = nn.Embedding(num_classes, time_embed_dim) |
|
|
|
ch = input_ch = int(channel_mult[0] * model_channels) |
|
self.input_blocks = nn.ModuleList( |
|
[TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))] |
|
) |
|
input_block_chans = [ch] |
|
ds = image_size |
|
for level, mult in enumerate(channel_mult): |
|
for _ in range(num_res_blocks[level]): |
|
layers = [ |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=int(mult * model_channels), |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
) |
|
] |
|
ch = int(mult * model_channels) |
|
if ds in attention_resolutions: |
|
layers.append( |
|
AttentionBlock( |
|
ch, |
|
num_heads=num_heads, |
|
num_head_channels=num_head_channels, |
|
use_new_attention_order=use_new_attention_order, |
|
) |
|
) |
|
self.input_blocks.append(TimestepEmbedSequential(*layers)) |
|
input_block_chans.append(ch) |
|
if level != len(channel_mult) - 1: |
|
out_ch = ch |
|
self.input_blocks.append( |
|
TimestepEmbedSequential( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
down=True, |
|
) |
|
if resblock_updown |
|
else Downsample( |
|
ch, conv_resample, dims=dims, out_channels=out_ch |
|
) |
|
) |
|
) |
|
ch = out_ch |
|
input_block_chans.append(ch) |
|
ds //= 2 |
|
|
|
self.middle_block = TimestepEmbedSequential( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
AttentionBlock( |
|
ch, |
|
num_heads=num_heads, |
|
num_head_channels=num_head_channels, |
|
use_new_attention_order=use_new_attention_order, |
|
), |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
) |
|
|
|
self.output_blocks = nn.ModuleList([]) |
|
for level, mult in list(enumerate(channel_mult))[::-1]: |
|
for i in range(num_res_blocks[level] + 1): |
|
ich = input_block_chans.pop() |
|
layers = [ |
|
ResBlock( |
|
ch + ich, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=int(model_channels * mult), |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
) |
|
] |
|
ch = int(model_channels * mult) |
|
if ds in attention_resolutions: |
|
layers.append( |
|
AttentionBlock( |
|
ch, |
|
num_head_channels=num_head_channels, |
|
use_new_attention_order=use_new_attention_order, |
|
) |
|
) |
|
if level and i == num_res_blocks[level]: |
|
out_ch = ch |
|
layers.append( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
up=True, |
|
) |
|
if resblock_updown |
|
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) |
|
) |
|
ds *= 2 |
|
self.output_blocks.append(TimestepEmbedSequential(*layers)) |
|
|
|
self.out = nn.Sequential( |
|
normalization(ch), |
|
nn.SiLU(), |
|
conv_nd(dims, input_ch, out_channels, 3, padding=1), |
|
) |
|
|
|
def forward(self, x, timesteps, y=None, lq=None): |
|
""" |
|
Apply the model to an input batch. |
|
:param x: an [N x C x ...] Tensor of inputs. |
|
:param timesteps: a 1-D batch of timesteps. |
|
:param y: an [N] Tensor of labels, if class-conditional. |
|
:param lq: an [N x C x ...] Tensor of low quality iamge. |
|
:return: an [N x C x ...] Tensor of outputs. |
|
""" |
|
assert (y is not None) == ( |
|
self.num_classes is not None |
|
), "must specify y if and only if the model is class-conditional" |
|
|
|
hs = [] |
|
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)).type(self.dtype) |
|
|
|
if self.num_classes is not None: |
|
assert y.shape == (x.shape[0],) |
|
emb = emb + self.label_emb(y) |
|
|
|
if lq is not None: |
|
assert self.cond_lq |
|
if lq.shape[2:] != x.shape[2:]: |
|
lq = F.pixel_unshuffle(lq, 2) |
|
x = th.cat([x, lq], dim=1) |
|
|
|
h = x.type(self.dtype) |
|
for ii, module in enumerate(self.input_blocks): |
|
h = module(h, emb) |
|
hs.append(h) |
|
h = self.middle_block(h, emb) |
|
for module in self.output_blocks: |
|
h = th.cat([h, hs.pop()], dim=1) |
|
h = module(h, emb) |
|
h = h.type(x.dtype) |
|
out = self.out(h) |
|
return out |
|
|
|
def convert_to_fp16(self): |
|
""" |
|
Convert the torso of the model to float16. |
|
""" |
|
self.input_blocks.apply(convert_module_to_f16) |
|
self.middle_block.apply(convert_module_to_f16) |
|
self.output_blocks.apply(convert_module_to_f16) |
|
|
|
def convert_to_fp32(self): |
|
""" |
|
Convert the torso of the model to float32. |
|
""" |
|
self.input_blocks.apply(convert_module_to_f32) |
|
self.middle_block.apply(convert_module_to_f32) |
|
self.output_blocks.apply(convert_module_to_f32) |
|
|
|
class UNetModelSwin(nn.Module): |
|
""" |
|
The full UNet model with attention and timestep embedding. |
|
:param in_channels: channels in the input Tensor. |
|
:param model_channels: base channel count for the model. |
|
:param out_channels: channels in the output Tensor. |
|
:param num_res_blocks: number of residual blocks per downsample. |
|
:param attention_resolutions: a collection of downsample rates at which |
|
attention will take place. May be a set, list, or tuple. |
|
For example, if this contains 4, then at 4x downsampling, attention |
|
will be used. |
|
:param dropout: the dropout probability. |
|
:param channel_mult: channel multiplier for each level of the UNet. |
|
:param conv_resample: if True, use learned convolutions for upsampling and |
|
downsampling. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. |
|
:param num_classes: if specified (as an int), then this model will be |
|
class-conditional with `num_classes` classes. |
|
:param num_heads: the number of attention heads in each attention layer. |
|
:param num_heads_channels: if specified, ignore num_heads and instead use |
|
a fixed channel width per attention head. |
|
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism. |
|
:param resblock_updown: use residual blocks for up/downsampling. |
|
:param use_new_attention_order: use a different attention pattern for potentially |
|
increased efficiency. |
|
:patch_norm: patch normalization in swin transformer |
|
:swin_embed_norm: embed_dim in swin transformer |
|
""" |
|
|
|
def __init__( |
|
self, |
|
image_size, |
|
in_channels, |
|
model_channels, |
|
out_channels, |
|
num_res_blocks, |
|
attention_resolutions, |
|
dropout=0, |
|
channel_mult=(1, 2, 4, 8), |
|
conv_resample=True, |
|
dims=2, |
|
use_fp16=False, |
|
num_heads=1, |
|
num_head_channels=-1, |
|
use_scale_shift_norm=False, |
|
resblock_updown=False, |
|
swin_depth=2, |
|
swin_embed_dim=96, |
|
window_size=8, |
|
mlp_ratio=2.0, |
|
patch_norm=False, |
|
cond_lq=True, |
|
cond_mask=False, |
|
lq_size=256, |
|
): |
|
super().__init__() |
|
|
|
if isinstance(num_res_blocks, int): |
|
num_res_blocks = [num_res_blocks,] * len(channel_mult) |
|
else: |
|
assert len(num_res_blocks) == len(channel_mult) |
|
if num_heads == -1: |
|
assert swin_embed_dim % num_head_channels == 0 and num_head_channels > 0 |
|
self.num_res_blocks = num_res_blocks |
|
|
|
self.image_size = image_size |
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
self.out_channels = out_channels |
|
self.attention_resolutions = attention_resolutions |
|
self.dropout = dropout |
|
self.channel_mult = channel_mult |
|
self.conv_resample = conv_resample |
|
self.dtype = th.float16 if use_fp16 else th.float32 |
|
self.num_heads = num_heads |
|
self.num_head_channels = num_head_channels |
|
self.cond_lq = cond_lq |
|
self.cond_mask = cond_mask |
|
|
|
time_embed_dim = model_channels * 4 |
|
self.time_embed = nn.Sequential( |
|
linear(model_channels, time_embed_dim), |
|
nn.SiLU(), |
|
linear(time_embed_dim, time_embed_dim), |
|
) |
|
|
|
if cond_lq and lq_size == image_size: |
|
self.feature_extractor = nn.Identity() |
|
base_chn = 4 if cond_mask else 3 |
|
else: |
|
feature_extractor = [] |
|
feature_chn = 4 if cond_mask else 3 |
|
base_chn = 16 |
|
for ii in range(int(math.log(lq_size / image_size) / math.log(2))): |
|
feature_extractor.append(nn.Conv2d(feature_chn, base_chn, 3, 1, 1)) |
|
feature_extractor.append(nn.SiLU()) |
|
feature_extractor.append(Downsample(base_chn, True, out_channels=base_chn*2)) |
|
base_chn *= 2 |
|
feature_chn = base_chn |
|
self.feature_extractor = nn.Sequential(*feature_extractor) |
|
|
|
ch = input_ch = int(channel_mult[0] * model_channels) |
|
in_channels += base_chn |
|
self.input_blocks = nn.ModuleList( |
|
[TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))] |
|
) |
|
input_block_chans = [ch] |
|
ds = image_size |
|
for level, mult in enumerate(channel_mult): |
|
for jj in range(num_res_blocks[level]): |
|
layers = [ |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=int(mult * model_channels), |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
) |
|
] |
|
ch = int(mult * model_channels) |
|
if ds in attention_resolutions and jj==0: |
|
layers.append( |
|
BasicLayer( |
|
in_chans=ch, |
|
embed_dim=swin_embed_dim, |
|
num_heads=num_heads if num_head_channels == -1 else swin_embed_dim // num_head_channels, |
|
window_size=window_size, |
|
depth=swin_depth, |
|
img_size=ds, |
|
patch_size=1, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop=dropout, |
|
attn_drop=0., |
|
drop_path=0., |
|
use_checkpoint=False, |
|
norm_layer=normalization, |
|
patch_norm=patch_norm, |
|
) |
|
) |
|
self.input_blocks.append(TimestepEmbedSequential(*layers)) |
|
input_block_chans.append(ch) |
|
if level != len(channel_mult) - 1: |
|
out_ch = ch |
|
self.input_blocks.append( |
|
TimestepEmbedSequential( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
down=True, |
|
) |
|
if resblock_updown |
|
else Downsample( |
|
ch, conv_resample, dims=dims, out_channels=out_ch |
|
) |
|
) |
|
) |
|
ch = out_ch |
|
input_block_chans.append(ch) |
|
ds //= 2 |
|
|
|
self.middle_block = TimestepEmbedSequential( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
BasicLayer( |
|
in_chans=ch, |
|
embed_dim=swin_embed_dim, |
|
num_heads=num_heads if num_head_channels == -1 else swin_embed_dim // num_head_channels, |
|
window_size=window_size, |
|
depth=swin_depth, |
|
img_size=ds, |
|
patch_size=1, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop=dropout, |
|
attn_drop=0., |
|
drop_path=0., |
|
use_checkpoint=False, |
|
norm_layer=normalization, |
|
patch_norm=patch_norm, |
|
), |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
) |
|
|
|
self.output_blocks = nn.ModuleList([]) |
|
for level, mult in list(enumerate(channel_mult))[::-1]: |
|
for i in range(num_res_blocks[level] + 1): |
|
ich = input_block_chans.pop() |
|
layers = [ |
|
ResBlock( |
|
ch + ich, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=int(model_channels * mult), |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
) |
|
] |
|
ch = int(model_channels * mult) |
|
if ds in attention_resolutions and i==0: |
|
layers.append( |
|
BasicLayer( |
|
in_chans=ch, |
|
embed_dim=swin_embed_dim, |
|
num_heads=num_heads if num_head_channels == -1 else swin_embed_dim // num_head_channels, |
|
window_size=window_size, |
|
depth=swin_depth, |
|
img_size=ds, |
|
patch_size=1, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop=dropout, |
|
attn_drop=0., |
|
drop_path=0., |
|
use_checkpoint=False, |
|
norm_layer=normalization, |
|
patch_norm=patch_norm, |
|
) |
|
) |
|
if level and i == num_res_blocks[level]: |
|
out_ch = ch |
|
layers.append( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
up=True, |
|
) |
|
if resblock_updown |
|
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) |
|
) |
|
ds *= 2 |
|
self.output_blocks.append(TimestepEmbedSequential(*layers)) |
|
|
|
self.out = nn.Sequential( |
|
normalization(ch), |
|
nn.SiLU(), |
|
conv_nd(dims, input_ch, out_channels, 3, padding=1), |
|
) |
|
|
|
def forward(self, x, timesteps, lq=None, mask=None): |
|
""" |
|
Apply the model to an input batch. |
|
:param x: an [N x C x ...] Tensor of inputs. |
|
:param timesteps: a 1-D batch of timesteps. |
|
:param lq: an [N x C x ...] Tensor of low quality iamge. |
|
:return: an [N x C x ...] Tensor of outputs. |
|
""" |
|
hs = [] |
|
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)).type(self.dtype) |
|
|
|
if lq is not None: |
|
assert self.cond_lq |
|
if mask is not None: |
|
assert self.cond_mask |
|
lq = th.cat([lq, mask], dim=1) |
|
lq = self.feature_extractor(lq.type(self.dtype)) |
|
x = th.cat([x, lq], dim=1) |
|
|
|
|
|
h = x.type(self.dtype) |
|
for ii, module in enumerate(self.input_blocks): |
|
h = module(h, emb) |
|
hs.append(h) |
|
h = self.middle_block(h, emb) |
|
for module in self.output_blocks: |
|
h = th.cat([h, hs.pop()], dim=1) |
|
h = module(h, emb) |
|
h = h.type(x.dtype) |
|
out = self.out(h) |
|
return out |
|
|
|
def convert_to_fp16(self): |
|
""" |
|
Convert the torso of the model to float16. |
|
""" |
|
self.input_blocks.apply(convert_module_to_f16) |
|
self.feature_extractor.apply(convert_module_to_f16) |
|
self.middle_block.apply(convert_module_to_f16) |
|
self.output_blocks.apply(convert_module_to_f16) |
|
|
|
def convert_to_fp32(self): |
|
""" |
|
Convert the torso of the model to float32. |
|
""" |
|
self.input_blocks.apply(convert_module_to_f32) |
|
self.middle_block.apply(convert_module_to_f32) |
|
self.output_blocks.apply(convert_module_to_f32) |
|
|
|
class ResBlockConv(TimestepBlock): |
|
""" |
|
A residual block that can optionally change the number of channels. |
|
:param channels: the number of input channels. |
|
:param emb_channels: the number of timestep embedding channels. |
|
:param out_channels: if specified, the number of out channels. |
|
:param use_conv: if True and out_channels is specified, use a spatial |
|
convolution instead of a smaller 1x1 convolution to change the |
|
channels in the skip connection. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. |
|
:param up: if True, use this block for upsampling. |
|
:param down: if True, use this block for downsampling. |
|
""" |
|
def __init__( |
|
self, |
|
channels, |
|
emb_channels, |
|
out_channels=None, |
|
use_conv=False, |
|
use_scale_shift_norm=False, |
|
dims=2, |
|
up=False, |
|
down=False, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.emb_channels = emb_channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.use_scale_shift_norm = use_scale_shift_norm |
|
|
|
self.in_layers = nn.Sequential( |
|
nn.SiLU(), |
|
conv_nd(dims, channels, self.out_channels, 3, padding=1), |
|
) |
|
|
|
self.updown = up or down |
|
|
|
if up: |
|
self.h_upd = Upsample(channels, False, dims) |
|
self.x_upd = Upsample(channels, False, dims) |
|
elif down: |
|
self.h_upd = Downsample(channels, False, dims) |
|
self.x_upd = Downsample(channels, False, dims) |
|
else: |
|
self.h_upd = self.x_upd = nn.Identity() |
|
|
|
self.emb_layers = nn.Sequential( |
|
nn.SiLU(), |
|
linear( |
|
emb_channels, |
|
2 * self.out_channels if use_scale_shift_norm else self.out_channels, |
|
), |
|
) |
|
self.out_layers = nn.Sequential( |
|
nn.SiLU(), |
|
zero_module( |
|
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) |
|
), |
|
) |
|
|
|
if self.out_channels == channels: |
|
self.skip_connection = nn.Identity() |
|
elif use_conv: |
|
self.skip_connection = conv_nd( |
|
dims, channels, self.out_channels, 3, padding=1 |
|
) |
|
else: |
|
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) |
|
|
|
def forward(self, x, emb): |
|
if self.updown: |
|
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] |
|
h = in_rest(x) |
|
h = self.h_upd(h) |
|
x = self.x_upd(x) |
|
h = in_conv(h) |
|
else: |
|
h = self.in_layers(x) |
|
emb_out = self.emb_layers(emb).type(h.dtype) |
|
while len(emb_out.shape) < len(h.shape): |
|
emb_out = emb_out[..., None] |
|
if self.use_scale_shift_norm: |
|
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] |
|
scale, shift = th.chunk(emb_out, 2, dim=1) |
|
h = out_norm(h) * (1 + scale) + shift |
|
h = out_rest(h) |
|
else: |
|
h = h + emb_out |
|
h = self.out_layers(h) |
|
return self.skip_connection(x) + h |
|
|
|
class UNetModelConv(nn.Module): |
|
""" |
|
The full UNet model with attention and timestep embedding. |
|
:param in_channels: channels in the input Tensor. |
|
:param model_channels: base channel count for the model. |
|
:param out_channels: channels in the output Tensor. |
|
:param num_res_blocks: number of residual blocks per downsample. |
|
:param attention_resolutions: a collection of downsample rates at which |
|
attention will take place. May be a set, list, or tuple. |
|
For example, if this contains 4, then at 4x downsampling, attention |
|
will be used. |
|
:param dropout: the dropout probability. |
|
:param channel_mult: channel multiplier for each level of the UNet. |
|
:param conv_resample: if True, use learned convolutions for upsampling and |
|
downsampling. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. |
|
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism. |
|
:param resblock_updown: use residual blocks for up/downsampling. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
model_channels, |
|
out_channels, |
|
num_res_blocks, |
|
cond_lq=True, |
|
channel_mult=(1, 2, 4, 8), |
|
conv_resample=True, |
|
dims=2, |
|
use_scale_shift_norm=False, |
|
resblock_updown=False, |
|
use_fp16=False, |
|
): |
|
super().__init__() |
|
|
|
if isinstance(num_res_blocks, int): |
|
num_res_blocks = [num_res_blocks,] * len(channel_mult) |
|
else: |
|
assert len(num_res_blocks) == len(channel_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.dtype = th.float16 if use_fp16 else th.float32 |
|
|
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
self.out_channels = out_channels |
|
self.channel_mult = channel_mult |
|
self.conv_resample = conv_resample |
|
self.cond_lq = cond_lq |
|
|
|
time_embed_dim = model_channels * 4 |
|
self.time_embed = nn.Sequential( |
|
linear(model_channels, time_embed_dim), |
|
nn.SiLU(), |
|
linear(time_embed_dim, time_embed_dim), |
|
) |
|
|
|
ch = input_ch = int(channel_mult[0] * model_channels) |
|
self.input_blocks = nn.ModuleList( |
|
[TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))] |
|
) |
|
input_block_chans = [ch] |
|
for level, mult in enumerate(channel_mult): |
|
for _ in range(num_res_blocks[level]): |
|
layers = [ |
|
ResBlockConv( |
|
ch, |
|
time_embed_dim, |
|
out_channels=int(mult * model_channels), |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
) |
|
] |
|
ch = int(mult * model_channels) |
|
self.input_blocks.append(TimestepEmbedSequential(*layers)) |
|
input_block_chans.append(ch) |
|
if level != len(channel_mult) - 1: |
|
out_ch = ch |
|
self.input_blocks.append( |
|
TimestepEmbedSequential( |
|
ResBlockConv( |
|
ch, |
|
time_embed_dim, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
down=True, |
|
) |
|
if resblock_updown |
|
else Downsample( |
|
ch, conv_resample, dims=dims, out_channels=out_ch |
|
) |
|
) |
|
) |
|
ch = out_ch |
|
input_block_chans.append(ch) |
|
|
|
self.middle_block = TimestepEmbedSequential( |
|
ResBlockConv( |
|
ch, |
|
time_embed_dim, |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
ResBlockConv( |
|
ch, |
|
time_embed_dim, |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
) |
|
|
|
self.output_blocks = nn.ModuleList([]) |
|
for level, mult in list(enumerate(channel_mult))[::-1]: |
|
for i in range(num_res_blocks[level] + 1): |
|
ich = input_block_chans.pop() |
|
layers = [ |
|
ResBlockConv( |
|
ch + ich, |
|
time_embed_dim, |
|
out_channels=int(model_channels * mult), |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
) |
|
] |
|
ch = int(model_channels * mult) |
|
if level and i == num_res_blocks[level]: |
|
out_ch = ch |
|
layers.append( |
|
ResBlockConv( |
|
ch, |
|
time_embed_dim, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
up=True, |
|
) |
|
if resblock_updown |
|
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) |
|
) |
|
self.output_blocks.append(TimestepEmbedSequential(*layers)) |
|
|
|
self.out = nn.Sequential( |
|
nn.SiLU(), |
|
conv_nd(dims, input_ch, out_channels, 3, padding=1), |
|
) |
|
|
|
def forward(self, x, timesteps, lq=None): |
|
""" |
|
Apply the model to an input batch. |
|
:param x: an [N x C x ...] Tensor of inputs. |
|
:param timesteps: a 1-D batch of timesteps. |
|
:param lq: an [N x C x ...] Tensor of low quality iamge. |
|
:return: an [N x C x ...] Tensor of outputs. |
|
""" |
|
hs = [] |
|
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) |
|
|
|
if lq is not None: |
|
assert self.cond_lq |
|
if lq.shape[2:] != x.shape[2:]: |
|
lq = F.pixel_unshuffle(lq, 2) |
|
x = th.cat([x, lq], dim=1) |
|
|
|
h = x.type(self.dtype) |
|
for ii, module in enumerate(self.input_blocks): |
|
h = module(h, emb) |
|
hs.append(h) |
|
h = self.middle_block(h, emb) |
|
for module in self.output_blocks: |
|
h = th.cat([h, hs.pop()], dim=1) |
|
h = module(h, emb) |
|
h = h.type(x.dtype) |
|
out = self.out(h) |
|
return out |
|
|
|
|