add app and reqs
Browse files- app.py +39 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image, ImageOps
|
3 |
+
from transformers import VisionEncoderDecoderModel, GPT2Tokenizer, AutoFeatureExtractor
|
4 |
+
|
5 |
+
text_processor = GPT2Tokenizer.from_pretrained("gpt2", pad_token="<|pad|>")
|
6 |
+
# text_processor = AutoTokenizer.from_pretrained("yuewu/toc_titler")
|
7 |
+
image_processor = AutoFeatureExtractor.from_pretrained("yuewu/toc_titler")
|
8 |
+
model = VisionEncoderDecoderModel.from_pretrained("yuewu/toc_titler")
|
9 |
+
|
10 |
+
def array_to_square_image(image):
|
11 |
+
# Numpy array to PIL image
|
12 |
+
image = Image.fromarray(image)
|
13 |
+
|
14 |
+
# Pad to square image
|
15 |
+
if image.size[0] != image.size[1]:
|
16 |
+
if image.size[0] > image.size[1]:
|
17 |
+
delta = image.size[0] - image.size[1]
|
18 |
+
padding = (0, delta//2, 0, delta//2)
|
19 |
+
if image.size[0] < image.size[1]:
|
20 |
+
delta = image.size[1] - image.size[0]
|
21 |
+
padding = (delta//2, 0, delta//2, 0)
|
22 |
+
image = ImageOps.expand(image, padding, fill=(255, 255, 255))
|
23 |
+
|
24 |
+
# In case size is off by 1
|
25 |
+
if image.size[0] != image.size[1]:
|
26 |
+
image.resize((image.size[0], image.size[0]))
|
27 |
+
|
28 |
+
return image
|
29 |
+
|
30 |
+
def greet(image):
|
31 |
+
image = array_to_square_image(image)
|
32 |
+
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
33 |
+
generated_ids = model.generate(pixel_values)
|
34 |
+
generated_text = text_processor.batch_decode(generated_ids, skip_special_tokens=True)
|
35 |
+
|
36 |
+
return generated_text[0]
|
37 |
+
|
38 |
+
demo = gr.Interface(fn=greet, inputs="image", outputs="text")
|
39 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
Pillow >= 9.2.0
|
2 |
+
transformers >= 4.0.0
|