"""This file contains some base implementation for discrminators. Copyright (2024) Bytedance Ltd. and/or its affiliates Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. TODO: Add reference to Mark Weber's tech report on the improved discriminator architecture. """ import functools import math from typing import Tuple import torch import torch.nn as nn import torch.nn.functional as F from .maskgit_vqgan import Conv2dSame class BlurBlock(torch.nn.Module): def __init__(self, kernel: Tuple[int] = (1, 3, 3, 1) ): super().__init__() kernel = torch.tensor(kernel, dtype=torch.float32, requires_grad=False) kernel = kernel[None, :] * kernel[:, None] kernel /= kernel.sum() kernel = kernel.unsqueeze(0).unsqueeze(0) self.register_buffer("kernel", kernel) def calc_same_pad(self, i: int, k: int, s: int) -> int: return max((math.ceil(i / s) - 1) * s + (k - 1) + 1 - i, 0) def forward(self, x: torch.Tensor) -> torch.Tensor: ic, ih, iw = x.size()[-3:] pad_h = self.calc_same_pad(i=ih, k=4, s=2) pad_w = self.calc_same_pad(i=iw, k=4, s=2) if pad_h > 0 or pad_w > 0: x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]) weight = self.kernel.expand(ic, -1, -1, -1) out = F.conv2d(input=x, weight=weight, stride=2, groups=x.shape[1]) return out class NLayerDiscriminator(torch.nn.Module): def __init__( self, num_channels: int = 3, hidden_channels: int = 128, num_stages: int = 3, blur_resample: bool = True, blur_kernel_size: int = 4 ): """ Initializes the NLayerDiscriminator. Args: num_channels -> int: The number of input channels. hidden_channels -> int: The number of hidden channels. num_stages -> int: The number of stages. blur_resample -> bool: Whether to use blur resampling. blur_kernel_size -> int: The blur kernel size. """ super().__init__() assert num_stages > 0, "Discriminator cannot have 0 stages" assert (not blur_resample) or (blur_kernel_size >= 3 and blur_kernel_size <= 5), "Blur kernel size must be in [3,5] when sampling]" in_channel_mult = (1,) + tuple(map(lambda t: 2**t, range(num_stages))) init_kernel_size = 5 activation = functools.partial(torch.nn.LeakyReLU, negative_slope=0.1) self.block_in = torch.nn.Sequential( Conv2dSame( num_channels, hidden_channels, kernel_size=init_kernel_size ), activation(), ) BLUR_KERNEL_MAP = { 3: (1,2,1), 4: (1,3,3,1), 5: (1,4,6,4,1), } discriminator_blocks = [] for i_level in range(num_stages): in_channels = hidden_channels * in_channel_mult[i_level] out_channels = hidden_channels * in_channel_mult[i_level + 1] block = torch.nn.Sequential( Conv2dSame( in_channels, out_channels, kernel_size=3, ), torch.nn.AvgPool2d(kernel_size=2, stride=2) if not blur_resample else BlurBlock(BLUR_KERNEL_MAP[blur_kernel_size]), torch.nn.GroupNorm(32, out_channels), activation(), ) discriminator_blocks.append(block) self.blocks = torch.nn.ModuleList(discriminator_blocks) self.pool = torch.nn.AdaptiveMaxPool2d((16, 16)) self.to_logits = torch.nn.Sequential( Conv2dSame(out_channels, out_channels, 1), activation(), Conv2dSame(out_channels, 1, kernel_size=5) ) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass. Args: x -> torch.Tensor: The input tensor. Returns: output -> torch.Tensor: The output tensor. """ hidden_states = self.block_in(x) for block in self.blocks: hidden_states = block(hidden_states) hidden_states = self.pool(hidden_states) return self.to_logits(hidden_states)