"""This file contains a class to evalute the reconstruction results. Copyright (2024) Bytedance Ltd. and/or its affiliates Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import warnings from typing import Sequence, Optional, Mapping, Text import numpy as np from scipy import linalg import torch import torch.nn.functional as F from .inception import get_inception_model def get_covariance(sigma: torch.Tensor, total: torch.Tensor, num_examples: int) -> torch.Tensor: """Computes covariance of the input tensor. Args: sigma: A torch.Tensor, sum of outer products of input features. total: A torch.Tensor, sum of all input features. num_examples: An integer, number of examples in the input tensor. Returns: A torch.Tensor, covariance of the input tensor. """ if num_examples == 0: return torch.zeros_like(sigma) sub_matrix = torch.outer(total, total) sub_matrix = sub_matrix / num_examples return (sigma - sub_matrix) / (num_examples - 1) class VQGANEvaluator: def __init__( self, device, enable_rfid: bool = True, enable_inception_score: bool = True, enable_codebook_usage_measure: bool = False, enable_codebook_entropy_measure: bool = False, num_codebook_entries: int = 1024 ): """Initializes VQGAN Evaluator. Args: device: The device to use for evaluation. enable_rfid: A boolean, whether enabling rFID score. enable_inception_score: A boolean, whether enabling Inception Score. enable_codebook_usage_measure: A boolean, whether enabling codebook usage measure. enable_codebook_entropy_measure: A boolean, whether enabling codebook entropy measure. num_codebook_entries: An integer, the number of codebook entries. """ self._device = device self._enable_rfid = enable_rfid self._enable_inception_score = enable_inception_score self._enable_codebook_usage_measure = enable_codebook_usage_measure self._enable_codebook_entropy_measure = enable_codebook_entropy_measure self._num_codebook_entries = num_codebook_entries # Variables related to Inception score and rFID. self._inception_model = None self._is_num_features = 0 self._rfid_num_features = 0 if self._enable_inception_score or self._enable_rfid: self._rfid_num_features = 2048 self._is_num_features = 1008 self._inception_model = get_inception_model().to(self._device) self._inception_model.eval() self._is_eps = 1e-16 self._rfid_eps = 1e-6 self.reset_metrics() def reset_metrics(self): """Resets all metrics.""" self._num_examples = 0 self._num_updates = 0 self._is_prob_total = torch.zeros( self._is_num_features, dtype=torch.float64, device=self._device ) self._is_total_kl_d = torch.zeros( self._is_num_features, dtype=torch.float64, device=self._device ) self._rfid_real_sigma = torch.zeros( (self._rfid_num_features, self._rfid_num_features), dtype=torch.float64, device=self._device ) self._rfid_real_total = torch.zeros( self._rfid_num_features, dtype=torch.float64, device=self._device ) self._rfid_fake_sigma = torch.zeros( (self._rfid_num_features, self._rfid_num_features), dtype=torch.float64, device=self._device ) self._rfid_fake_total = torch.zeros( self._rfid_num_features, dtype=torch.float64, device=self._device ) self._set_of_codebook_indices = set() self._codebook_frequencies = torch.zeros((self._num_codebook_entries), dtype=torch.float64, device=self._device) def update( self, real_images: torch.Tensor, fake_images: torch.Tensor, codebook_indices: Optional[torch.Tensor] = None ): """Updates the metrics with the given images. Args: real_images: A torch.Tensor, the real images. fake_images: A torch.Tensor, the fake images. codebook_indices: A torch.Tensor, the indices of the codebooks for each image. Raises: ValueError: If the fake images is not in RGB (3 channel). ValueError: If the fake and real images have different shape. """ batch_size = real_images.shape[0] dim = tuple(range(1, real_images.ndim)) self._num_examples += batch_size self._num_updates += 1 if self._enable_inception_score or self._enable_rfid: # Quantize to uint8 as a real image. fake_inception_images = (fake_images * 255).to(torch.uint8) features_fake = self._inception_model(fake_inception_images) inception_logits_fake = features_fake["logits_unbiased"] inception_probabilities_fake = F.softmax(inception_logits_fake, dim=-1) if self._enable_inception_score: probabiliies_sum = torch.sum(inception_probabilities_fake, 0, dtype=torch.float64) log_prob = torch.log(inception_probabilities_fake + self._is_eps) if log_prob.dtype != inception_probabilities_fake.dtype: log_prob = log_prob.to(inception_probabilities_fake) kl_sum = torch.sum(inception_probabilities_fake * log_prob, 0, dtype=torch.float64) self._is_prob_total += probabiliies_sum self._is_total_kl_d += kl_sum if self._enable_rfid: real_inception_images = (real_images * 255).to(torch.uint8) features_real = self._inception_model(real_inception_images) if (features_real['2048'].shape[0] != features_fake['2048'].shape[0] or features_real['2048'].shape[1] != features_fake['2048'].shape[1]): raise ValueError(f"Number of features should be equal for real and fake.") for f_real, f_fake in zip(features_real['2048'], features_fake['2048']): self._rfid_real_total += f_real self._rfid_fake_total += f_fake self._rfid_real_sigma += torch.outer(f_real, f_real) self._rfid_fake_sigma += torch.outer(f_fake, f_fake) if self._enable_codebook_usage_measure: self._set_of_codebook_indices |= set(torch.unique(codebook_indices, sorted=False).tolist()) if self._enable_codebook_entropy_measure: entries, counts = torch.unique(codebook_indices, sorted=False, return_counts=True) self._codebook_frequencies.index_add_(0, entries.int(), counts.double()) def result(self) -> Mapping[Text, torch.Tensor]: """Returns the evaluation result.""" eval_score = {} if self._num_examples < 1: raise ValueError("No examples to evaluate.") if self._enable_inception_score: mean_probs = self._is_prob_total / self._num_examples log_mean_probs = torch.log(mean_probs + self._is_eps) if log_mean_probs.dtype != self._is_prob_total.dtype: log_mean_probs = log_mean_probs.to(self._is_prob_total) excess_entropy = self._is_prob_total * log_mean_probs avg_kl_d = torch.sum(self._is_total_kl_d - excess_entropy) / self._num_examples inception_score = torch.exp(avg_kl_d).item() eval_score["InceptionScore"] = inception_score if self._enable_rfid: mu_real = self._rfid_real_total / self._num_examples mu_fake = self._rfid_fake_total / self._num_examples sigma_real = get_covariance(self._rfid_real_sigma, self._rfid_real_total, self._num_examples) sigma_fake = get_covariance(self._rfid_fake_sigma, self._rfid_fake_total, self._num_examples) mu_real, mu_fake = mu_real.cpu(), mu_fake.cpu() sigma_real, sigma_fake = sigma_real.cpu(), sigma_fake.cpu() diff = mu_real - mu_fake # Product might be almost singular. covmean, _ = linalg.sqrtm(sigma_real.mm(sigma_fake).numpy(), disp=False) # Numerical error might give slight imaginary component. if np.iscomplexobj(covmean): if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): m = np.max(np.abs(covmean.imag)) raise ValueError("Imaginary component {}".format(m)) covmean = covmean.real tr_covmean = np.trace(covmean) if not np.isfinite(covmean).all(): tr_covmean = np.sum(np.sqrt(( (np.diag(sigma_real) * self._rfid_eps) * (np.diag(sigma_fake) * self._rfid_eps)) / (self._rfid_eps * self._rfid_eps) )) rfid = float(diff.dot(diff).item() + torch.trace(sigma_real) + torch.trace(sigma_fake) - 2 * tr_covmean ) if torch.isnan(torch.tensor(rfid)) or torch.isinf(torch.tensor(rfid)): warnings.warn("The product of covariance of train and test features is out of bounds.") eval_score["rFID"] = rfid if self._enable_codebook_usage_measure: usage = float(len(self._set_of_codebook_indices)) / self._num_codebook_entries eval_score["CodebookUsage"] = usage if self._enable_codebook_entropy_measure: probs = self._codebook_frequencies / self._codebook_frequencies.sum() entropy = (-torch.log2(probs + 1e-8) * probs).sum() eval_score["CodebookEntropy"] = entropy return eval_score