Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Adapted from https://github.com/webdataset/webdataset-imagenet/blob/main/convert-imagenet.py | |
import argparse | |
import os | |
import sys | |
import time | |
import webdataset as wds | |
from datasets import load_dataset | |
def convert_imagenet_to_wds(output_dir, max_train_samples_per_shard, max_val_samples_per_shard): | |
assert not os.path.exists(os.path.join(output_dir, "imagenet-train-000000.tar")) | |
assert not os.path.exists(os.path.join(output_dir, "imagenet-val-000000.tar")) | |
opat = os.path.join(output_dir, "imagenet-train-%06d.tar") | |
output = wds.ShardWriter(opat, maxcount=max_train_samples_per_shard) | |
dataset = load_dataset("imagenet-1k", streaming=True, split="train", use_auth_token=True) | |
now = time.time() | |
for i, example in enumerate(dataset): | |
if i % max_train_samples_per_shard == 0: | |
print(i, file=sys.stderr) | |
img, label = example["image"], example["label"] | |
output.write({"__key__": "%08d" % i, "jpg": img.convert("RGB"), "cls": label}) | |
output.close() | |
time_taken = time.time() - now | |
print(f"Wrote {i+1} train examples in {time_taken // 3600} hours.") | |
opat = os.path.join(output_dir, "imagenet-val-%06d.tar") | |
output = wds.ShardWriter(opat, maxcount=max_val_samples_per_shard) | |
dataset = load_dataset("imagenet-1k", streaming=True, split="validation", use_auth_token=True) | |
now = time.time() | |
for i, example in enumerate(dataset): | |
if i % max_val_samples_per_shard == 0: | |
print(i, file=sys.stderr) | |
img, label = example["image"], example["label"] | |
output.write({"__key__": "%08d" % i, "jpg": img.convert("RGB"), "cls": label}) | |
output.close() | |
time_taken = time.time() - now | |
print(f"Wrote {i+1} val examples in {time_taken // 60} min.") | |
if __name__ == "__main__": | |
# create parase object | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--output_dir", type=str, required=True, help="Path to the output directory.") | |
parser.add_argument("--max_train_samples_per_shard", type=int, default=4000, help="Path to the output directory.") | |
parser.add_argument("--max_val_samples_per_shard", type=int, default=1000, help="Path to the output directory.") | |
args = parser.parse_args() | |
# create output directory | |
os.makedirs(args.output_dir, exist_ok=True) | |
convert_imagenet_to_wds(args.output_dir, args.max_train_samples_per_shard, args.max_val_samples_per_shard) |