Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
import spaces | |
from threading import Thread | |
from typing import Iterator | |
# Add markdown header | |
header = """ | |
# ๐ฆโโฌ MagpieLMs: Open LLMs with Fully Transparent Alignment Recipes | |
๐ฌ We've aligned Llama-3.1-8B and a 4B version (distilled by NVIDIA) using purely synthetic data generated by our [Magpie](https://arxiv.org/abs/2406.08464) method. Our open-source post-training recipe includes: SFT and DPO data, all training configs + logs. This allows everyone to reproduce the alignment process for their own research. Note that our data does not contain any GPT-generated data, and has a much friendly license for both commercial and academic use. | |
๐ Links: [**Magpie Collection**](https://huggingface.co./collections/Magpie-Align/magpielm-66e2221f31fa3bf05b10786a); [**Magpie Paper**](https://arxiv.org/abs/2406.08464) ๐ฎ Contact: [Zhangchen Xu](https://zhangchenxu.com) and [Bill Yuchen Lin](https://yuchenlin.xyz). | |
--- | |
""" | |
# Load model and tokenizer | |
model_name = "Magpie-Align/MagpieLM-8B-Chat-v0.1" | |
device = "cuda" # the device to load the model onto | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype="auto", | |
ignore_mismatched_sizes=True | |
) | |
model.to(device) | |
MAX_INPUT_TOKEN_LENGTH = 4096 # You may need to adjust this value | |
def respond( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
system_prompt: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
conversation = [] | |
if system_prompt: | |
conversation.append({"role": "system", "content": system_prompt}) | |
for user, assistant in chat_history: | |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
chatbot = gr.Chatbot(placeholder="<strong>MagpieLM-Chat-8B (v0.1)</strong>") | |
demo = gr.ChatInterface( | |
fn=respond, | |
chatbot=chatbot, | |
additional_inputs=[ | |
gr.Textbox(value="You are Magpie, a helpful AI assistant. For simple queries, try to answer them directly; for complex questions, try to think step-by-step before providing an answer.", label="System message"), | |
gr.Slider(minimum=128, maximum=2048, value=512, step=64, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.9, | |
step=0.1, | |
label="Top-p (nucleus sampling)", | |
), | |
gr.Slider(minimum=0.5, maximum=1.5, value=1.0, step=0.1, label="Repetition Penalty"), | |
], | |
description=header, # Add the header as the description | |
title="MagpieLM-8B Chat (v0.1)", | |
theme=gr.themes.Soft(), | |
examples=[ | |
["Hello, what is your name?"], | |
["Can you write a poem for me?"], | |
["What's the meaning of life?"], | |
] | |
) | |
# set a default message in the chatbox to start the conversation | |
# demo.chatbot.placeholder = "Hello! What's your name?" | |
if __name__ == "__main__": | |
demo.queue() | |
demo.launch(share=True, show_api=False) | |