Spaces:
Running
on
Zero
Running
on
Zero
try: | |
import spaces | |
except: | |
pass | |
import os | |
import gradio as gr | |
import json | |
import ast | |
import torch | |
from gradio_image_prompter import ImagePrompter | |
from sam2.sam2_image_predictor import SAM2ImagePredictor | |
from omegaconf import OmegaConf | |
from PIL import Image, ImageDraw | |
import numpy as np | |
from copy import deepcopy | |
import cv2 | |
import torch.nn.functional as F | |
import torchvision | |
from einops import rearrange | |
import tempfile | |
from objctrl_2_5d.utils.ui_utils import process_image, get_camera_pose, get_subject_points, get_points, undo_points, mask_image, traj2cam, get_mid_params | |
from ZoeDepth.zoedepth.utils.misc import colorize | |
from cameractrl.inference import get_pipeline | |
from objctrl_2_5d.utils.objmask_util import RT2Plucker, Unprojected, roll_with_ignore_multidim, dilate_mask_pytorch | |
from objctrl_2_5d.utils.filter_utils import get_freq_filter, freq_mix_3d | |
### Title and Description ### | |
#### Description #### | |
title = r"""<h1 align="center">ObjCtrl-2.5D: Training-free Object Control with Camera Poses</h1>""" | |
# subtitle = r"""<h2 align="center">Deployed on SVD Generation</h2>""" | |
important_link = r""" | |
<div align='center'> | |
<a href='https://wzhouxiff.github.io/projects/ObjCtrl-2.5D/assets/ObjCtrl-2.5D.pdf'>[Paper]</a> | |
  <a href='https://arxiv.org/pdf/2412.07721'>[arxiv]</a> | |
  <a href='https://wzhouxiff.github.io/projects/ObjCtrl-2.5D/'>[Project Page]</a> | |
  <a href='https://github.com/wzhouxiff/ObjCtrl-2.5D'>[Code]</a> | |
</div> | |
""" | |
authors = r""" | |
<div align='center'> | |
<a href='https://wzhouxiff.github.io/'>Zhouxia Wang</a> | |
  <a href='https://nirvanalan.github.io/'>Yushi Lan</a> | |
  <a href='https://shangchenzhou.com/'>Shangchen Zhou</a> | |
  <a href='https://www.mmlab-ntu.com/person/ccloy/index.html'>Chen Change Loy</a> | |
</div> | |
""" | |
affiliation = r""" | |
<div align='center'> | |
<a href='https://www.mmlab-ntu.com/'>S-Lab, NTU Singapore</a> | |
</div> | |
""" | |
description = r""" | |
<b>Official Gradio demo</b> for <a href='https://github.com/wzhouxiff/ObjCtrl-2.5D' target='_blank'><b>ObjCtrl-2.5D: Training-free Object Control with Camera Poses</b></a>.<br> | |
🔥 ObjCtrl2.5D enables object motion control in a I2V generated video via transforming 2D trajectories to 3D using depth, subsequently converting them into camera poses, | |
thereby leveraging the exisitng camera motion control module for object motion control without requiring additional training.<br> | |
""" | |
article = r""" | |
If ObjCtrl2.5D is helpful, please help to ⭐ the <a href='https://github.com/wzhouxiff/ObjCtrl-2.5D' target='_blank'>Github Repo</a>. Thanks! | |
[![GitHub Stars](https://img.shields.io/github/stars/wzhouxiff%2FObjCtrl-2.5D | |
)](https://github.com/wzhouxiff/ObjCtrl-2.5D) | |
--- | |
📝 **License** | |
<br> | |
This project is licensed under <a href="https://github.com/wzhouxiff/ObjCtrl-2.5D/blob/main/LICENSE">S-Lab License 1.0</a>, | |
Redistribution and use for non-commercial purposes should follow this license. | |
📝 **Citation** | |
<br> | |
If our work is useful for your research, please consider citing: | |
```bibtex | |
@inproceedings{objctrl2.5d, | |
title={ObjCtrl-2.5D: Training-free Object Control with Camera Poses}, | |
author={Wang, Zhouxia and Lan, Yushi and Zhou, Shangchen and Loy, Chen Change}, | |
booktitle={arXiv preprint arXiv:2412.07721}, | |
year={2024} | |
} | |
``` | |
📧 **Contact** | |
<br> | |
If you have any questions, please feel free to reach me out at <b>[email protected]</b>. | |
""" | |
# pre-defined parameters | |
DEBUG = False | |
if DEBUG: | |
cur_OUTPUT_PATH = 'outputs/tmp' | |
os.makedirs(cur_OUTPUT_PATH, exist_ok=True) | |
# num_inference_steps=25 | |
min_guidance_scale = 1.0 | |
max_guidance_scale = 3.0 | |
area_ratio = 0.3 | |
depth_scale_ = 5.2 | |
center_margin = 10 | |
height, width = 320, 576 | |
num_frames = 14 | |
intrinsics = np.array([[float(width), float(width), float(width) / 2, float(height) / 2]]) | |
intrinsics = np.repeat(intrinsics, num_frames, axis=0) # [n_frame, 4] | |
fx = intrinsics[0, 0] / width | |
fy = intrinsics[0, 1] / height | |
cx = intrinsics[0, 2] / width | |
cy = intrinsics[0, 3] / height | |
down_scale = 8 | |
H, W = height // down_scale, width // down_scale | |
K = np.array([[width / down_scale, 0, W / 2], [0, width / down_scale, H / 2], [0, 0, 1]]) | |
# -------------- initialization -------------- | |
# CAMERA_MODE = ["Traj2Cam", "Rotate", "Clockwise", "Translate"] | |
CAMERA_MODE = ["None", "ZoomIn", "ZoomOut", "PanRight", "PanLeft", "TiltUp", "TiltDown", "ClockWise", "Anti-CW", "Rotate60"] | |
# select the device for computation | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
elif torch.backends.mps.is_available(): | |
device = torch.device("mps") | |
else: | |
device = torch.device("cpu") | |
print(f"using device: {device}") | |
# # segmentation model | |
segmentor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-tiny", cache_dir="ckpt", device=device) | |
# depth model | |
d_model_NK = torch.hub.load('./ZoeDepth', 'ZoeD_NK', source='local', pretrained=True).to(device) | |
# cameractrl model | |
config = "configs/svd_320_576_cameractrl.yaml" | |
model_id = "stabilityai/stable-video-diffusion-img2vid" | |
ckpt = "checkpoints/CameraCtrl_svd.ckpt" | |
if not os.path.exists(ckpt): | |
os.makedirs("checkpoints", exist_ok=True) | |
os.system("wget -c https://huggingface.co./hehao13/CameraCtrl_SVD_ckpts/resolve/main/CameraCtrl_svd.ckpt?download=true") | |
os.system("mv CameraCtrl_svd.ckpt?download=true checkpoints/CameraCtrl_svd.ckpt") | |
model_config = OmegaConf.load(config) | |
pipeline = get_pipeline(model_id, "unet", model_config['down_block_types'], model_config['up_block_types'], | |
model_config['pose_encoder_kwargs'], model_config['attention_processor_kwargs'], | |
ckpt, True, device) | |
# segmentor = None | |
# d_model_NK = None | |
# pipeline = None | |
### run the demo ## | |
def segment(canvas, image, logits): | |
if logits is not None: | |
logits *= 32.0 | |
_, points = get_subject_points(canvas) | |
image = np.array(image) | |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16): | |
segmentor.set_image(image) | |
input_points = [] | |
input_boxes = [] | |
for p in points: | |
[x1, y1, _, x2, y2, _] = p | |
if x2==0 and y2==0: | |
input_points.append([x1, y1]) | |
else: | |
input_boxes.append([x1, y1, x2, y2]) | |
if len(input_points) == 0: | |
input_points = None | |
input_labels = None | |
else: | |
input_points = np.array(input_points) | |
input_labels = np.ones(len(input_points)) | |
if len(input_boxes) == 0: | |
input_boxes = None | |
else: | |
input_boxes = np.array(input_boxes) | |
masks, _, logits = segmentor.predict( | |
point_coords=input_points, | |
point_labels=input_labels, | |
box=input_boxes, | |
multimask_output=False, | |
return_logits=True, | |
mask_input=logits, | |
) | |
mask = masks > 0 | |
masked_img = mask_image(image, mask[0], color=[252, 140, 90], alpha=0.9) | |
masked_img = Image.fromarray(masked_img) | |
return mask[0], {'image': masked_img, 'points': points}, logits / 32.0 | |
def run_objctrl_2_5d(condition_image, | |
mask, | |
depth, | |
RTs, | |
bg_mode, | |
shared_wapring_latents, | |
scale_wise_masks, | |
rescale, | |
seed, | |
ds, dt, | |
num_inference_steps=25): | |
seed = int(seed) | |
center_h_margin, center_w_margin = center_margin, center_margin | |
depth_center = np.mean(depth[height//2-center_h_margin:height//2+center_h_margin, width//2-center_w_margin:width//2+center_w_margin]) | |
if rescale > 0: | |
depth_rescale = round(depth_scale_ * rescale / depth_center, 2) | |
else: | |
depth_rescale = 1.0 | |
depth = depth * depth_rescale | |
depth_down = F.interpolate(torch.tensor(depth).unsqueeze(0).unsqueeze(0), | |
(H, W), mode='bilinear', align_corners=False).squeeze().numpy() # [H, W] | |
## latent | |
generator = torch.Generator() | |
generator.manual_seed(seed) | |
latents_org = pipeline.prepare_latents( | |
1, | |
14, | |
8, | |
height, | |
width, | |
pipeline.dtype, | |
device, | |
generator, | |
None, | |
) | |
latents_org = latents_org / pipeline.scheduler.init_noise_sigma | |
cur_plucker_embedding, _, _ = RT2Plucker(RTs, RTs.shape[0], (height, width), fx, fy, cx, cy) # 6, V, H, W | |
cur_plucker_embedding = cur_plucker_embedding.to(device) | |
cur_plucker_embedding = cur_plucker_embedding[None, ...] # b 6 f h w | |
cur_plucker_embedding = cur_plucker_embedding.permute(0, 2, 1, 3, 4) # b f 6 h w | |
cur_plucker_embedding = cur_plucker_embedding[:, :num_frames, ...] | |
cur_pose_features = pipeline.pose_encoder(cur_plucker_embedding) | |
# bg_mode = ["Fixed", "Reverse", "Free"] | |
if bg_mode == "Fixed": | |
fix_RTs = np.repeat(RTs[0][None, ...], num_frames, axis=0) # [n_frame, 4, 3] | |
fix_plucker_embedding, _, _ = RT2Plucker(fix_RTs, num_frames, (height, width), fx, fy, cx, cy) # 6, V, H, W | |
fix_plucker_embedding = fix_plucker_embedding.to(device) | |
fix_plucker_embedding = fix_plucker_embedding[None, ...] # b 6 f h w | |
fix_plucker_embedding = fix_plucker_embedding.permute(0, 2, 1, 3, 4) # b f 6 h w | |
fix_plucker_embedding = fix_plucker_embedding[:, :num_frames, ...] | |
fix_pose_features = pipeline.pose_encoder(fix_plucker_embedding) | |
elif bg_mode == "Reverse": | |
bg_plucker_embedding, _, _ = RT2Plucker(RTs[::-1], RTs.shape[0], (height, width), fx, fy, cx, cy) # 6, V, H, W | |
bg_plucker_embedding = bg_plucker_embedding.to(device) | |
bg_plucker_embedding = bg_plucker_embedding[None, ...] # b 6 f h w | |
bg_plucker_embedding = bg_plucker_embedding.permute(0, 2, 1, 3, 4) # b f 6 h w | |
bg_plucker_embedding = bg_plucker_embedding[:, :num_frames, ...] | |
fix_pose_features = pipeline.pose_encoder(bg_plucker_embedding) | |
else: | |
fix_pose_features = None | |
#### preparing mask | |
mask = Image.fromarray(mask) | |
mask = mask.resize((W, H)) | |
mask = np.array(mask).astype(np.float32) | |
mask = np.expand_dims(mask, axis=-1) | |
# visulize mask | |
if DEBUG: | |
mask_sum_vis = mask[..., 0] | |
mask_sum_vis = (mask_sum_vis * 255.0).astype(np.uint8) | |
mask_sum_vis = Image.fromarray(mask_sum_vis) | |
mask_sum_vis.save(f'{cur_OUTPUT_PATH}/org_mask.png') | |
try: | |
warped_masks = Unprojected(mask, depth_down, RTs, H=H, W=W, K=K) | |
warped_masks.insert(0, mask) | |
except: | |
# mask to bbox | |
print(f'!!! Mask is too small to warp; mask to bbox') | |
mask = mask[:, :, 0] | |
coords = cv2.findNonZero(mask) | |
x, y, w, h = cv2.boundingRect(coords) | |
# mask[y:y+h, x:x+w] = 1.0 | |
center_x, center_y = x + w // 2, y + h // 2 | |
center_z = depth_down[center_y, center_x] | |
# RTs [n_frame, 3, 4] to [n_frame, 4, 4] , add [0, 0, 0, 1] | |
RTs = np.concatenate([RTs, np.array([[[0, 0, 0, 1]]] * num_frames)], axis=1) | |
# RTs: world to camera | |
P0 = np.array([center_x, center_y, 1]) | |
Pc0 = np.linalg.inv(K) @ P0 * center_z | |
pw = np.linalg.inv(RTs[0]) @ np.array([Pc0[0], Pc0[1], center_z, 1]) # [4] | |
P = [np.array([center_x, center_y])] | |
for i in range(1, num_frames): | |
Pci = RTs[i] @ pw | |
Pi = K @ Pci[:3] / Pci[2] | |
P.append(Pi[:2]) | |
warped_masks = [mask] | |
for i in range(1, num_frames): | |
shift_x = int(round(P[i][0] - P[0][0])) | |
shift_y = int(round(P[i][1] - P[0][1])) | |
cur_mask = roll_with_ignore_multidim(mask, [shift_y, shift_x]) | |
warped_masks.append(cur_mask) | |
warped_masks = [v[..., None] for v in warped_masks] | |
warped_masks = np.stack(warped_masks, axis=0) # [f, h, w] | |
warped_masks = np.repeat(warped_masks, 3, axis=-1) # [f, h, w, 3] | |
mask_sum = np.sum(warped_masks, axis=0, keepdims=True) # [1, H, W, 3] | |
mask_sum[mask_sum > 1.0] = 1.0 | |
mask_sum = mask_sum[0,:,:, 0] | |
if DEBUG: | |
## visulize warp mask | |
warp_masks_vis = torch.tensor(warped_masks) | |
warp_masks_vis = (warp_masks_vis * 255.0).to(torch.uint8) | |
torchvision.io.write_video(f'{cur_OUTPUT_PATH}/warped_masks.mp4', warp_masks_vis, fps=10, video_codec='h264', options={'crf': '10'}) | |
# visulize mask | |
mask_sum_vis = mask_sum | |
mask_sum_vis = (mask_sum_vis * 255.0).astype(np.uint8) | |
mask_sum_vis = Image.fromarray(mask_sum_vis) | |
mask_sum_vis.save(f'{cur_OUTPUT_PATH}/merged_mask.png') | |
if scale_wise_masks: | |
min_area = H * W * area_ratio # cal in downscale | |
non_zero_len = mask_sum.sum() | |
print(f'non_zero_len: {non_zero_len}, min_area: {min_area}') | |
if non_zero_len > min_area: | |
kernel_sizes = [1, 1, 1, 3] | |
elif non_zero_len > min_area * 0.5: | |
kernel_sizes = [3, 1, 1, 5] | |
else: | |
kernel_sizes = [5, 3, 3, 7] | |
else: | |
kernel_sizes = [1, 1, 1, 1] | |
mask = torch.from_numpy(mask_sum) # [h, w] | |
mask = mask[None, None, ...] # [1, 1, h, w] | |
mask = F.interpolate(mask, (height, width), mode='bilinear', align_corners=False) # [1, 1, H, W] | |
# mask = mask.repeat(1, num_frames, 1, 1) # [1, f, H, W] | |
mask = mask.to(pipeline.dtype).to(device) | |
##### Mask End ###### | |
### Got blending pose features Start ### | |
pose_features = [] | |
for i in range(0, len(cur_pose_features)): | |
kernel_size = kernel_sizes[i] | |
h, w = cur_pose_features[i].shape[-2:] | |
if fix_pose_features is None: | |
pose_features.append(torch.zeros_like(cur_pose_features[i])) | |
else: | |
pose_features.append(fix_pose_features[i]) | |
cur_mask = F.interpolate(mask, (h, w), mode='bilinear', align_corners=False) | |
cur_mask = dilate_mask_pytorch(cur_mask, kernel_size=kernel_size) # [1, 1, H, W] | |
cur_mask = cur_mask.repeat(1, num_frames, 1, 1) # [1, f, H, W] | |
if DEBUG: | |
# visulize mask | |
mask_vis = cur_mask[0, 0].cpu().numpy() * 255.0 | |
mask_vis = Image.fromarray(mask_vis.astype(np.uint8)) | |
mask_vis.save(f'{cur_OUTPUT_PATH}/mask_k{kernel_size}_scale{i}.png') | |
cur_mask = cur_mask[None, ...] # [1, 1, f, H, W] | |
pose_features[-1] = cur_pose_features[i] * cur_mask + pose_features[-1] * (1 - cur_mask) | |
### Got blending pose features End ### | |
##### Warp Noise Start ###### | |
if shared_wapring_latents: | |
noise = latents_org[0, 0].data.cpu().numpy().copy() #[14, 4, 40, 72] | |
noise = np.transpose(noise, (1, 2, 0)) # [40, 72, 4] | |
try: | |
warp_noise = Unprojected(noise, depth_down, RTs, H=H, W=W, K=K) | |
warp_noise.insert(0, noise) | |
except: | |
print(f'!!! Noise is too small to warp; mask to bbox') | |
warp_noise = [noise] | |
for i in range(1, num_frames): | |
shift_x = int(round(P[i][0] - P[0][0])) | |
shift_y = int(round(P[i][1] - P[0][1])) | |
cur_noise= roll_with_ignore_multidim(noise, [shift_y, shift_x]) | |
warp_noise.append(cur_noise) | |
warp_noise = np.stack(warp_noise, axis=0) # [f, h, w, 4] | |
if DEBUG: | |
## visulize warp noise | |
warp_noise_vis = torch.tensor(warp_noise)[..., :3] * torch.tensor(warped_masks) | |
warp_noise_vis = (warp_noise_vis - warp_noise_vis.min()) / (warp_noise_vis.max() - warp_noise_vis.min()) | |
warp_noise_vis = (warp_noise_vis * 255.0).to(torch.uint8) | |
torchvision.io.write_video(f'{cur_OUTPUT_PATH}/warp_noise.mp4', warp_noise_vis, fps=10, video_codec='h264', options={'crf': '10'}) | |
warp_latents = torch.tensor(warp_noise).permute(0, 3, 1, 2).to(latents_org.device).to(latents_org.dtype) # [frame, 4, H, W] | |
warp_latents = warp_latents.unsqueeze(0) # [1, frame, 4, H, W] | |
warped_masks = torch.tensor(warped_masks).permute(0, 3, 1, 2).unsqueeze(0) # [1, frame, 3, H, W] | |
mask_extend = torch.concat([warped_masks, warped_masks[:,:,0:1]], dim=2) # [1, frame, 4, H, W] | |
mask_extend = mask_extend.to(latents_org.device).to(latents_org.dtype) | |
warp_latents = warp_latents * mask_extend + latents_org * (1 - mask_extend) | |
warp_latents = warp_latents.permute(0, 2, 1, 3, 4) | |
random_noise = latents_org.clone().permute(0, 2, 1, 3, 4) | |
filter_shape = warp_latents.shape | |
freq_filter = get_freq_filter( | |
filter_shape, | |
device = device, | |
filter_type='butterworth', | |
n=4, | |
d_s=ds, | |
d_t=dt | |
) | |
warp_latents = freq_mix_3d(warp_latents, random_noise, freq_filter) | |
warp_latents = warp_latents.permute(0, 2, 1, 3, 4) | |
else: | |
warp_latents = latents_org.clone() | |
generator.manual_seed(42) | |
with torch.no_grad(): | |
result = pipeline( | |
image=condition_image, | |
pose_embedding=cur_plucker_embedding, | |
height=height, | |
width=width, | |
num_frames=num_frames, | |
num_inference_steps=num_inference_steps, | |
min_guidance_scale=min_guidance_scale, | |
max_guidance_scale=max_guidance_scale, | |
do_image_process=True, | |
generator=generator, | |
output_type='pt', | |
pose_features= pose_features, | |
latents = warp_latents | |
).frames[0].cpu() #[f, c, h, w] | |
result = rearrange(result, 'f c h w -> f h w c') | |
result = (result * 255.0).to(torch.uint8) | |
video_path = tempfile.NamedTemporaryFile(suffix='.mp4').name | |
torchvision.io.write_video(video_path, result, fps=10, video_codec='h264', options={'crf': '8'}) | |
return video_path | |
# UI function | |
def process_image(raw_image, trajectory_points): | |
image, points = raw_image['image'], raw_image['points'] | |
print(points) | |
try: | |
assert(len(points)) == 1, "Please draw only one bbox" | |
[x1, y1, _, x2, y2, _] = points[0] | |
image = image.crop((x1, y1, x2, y2)) | |
image = image.resize((width, height)) | |
except: | |
image = image.resize((width, height)) | |
depth = d_model_NK.infer_pil(image) | |
colored_depth = colorize(depth, cmap='gray_r') # [h, w, 4] 0-255 | |
depth_img = deepcopy(colored_depth[:, :, :3]) | |
if len(trajectory_points) > 0: | |
for idx, point in enumerate(trajectory_points): | |
if idx % 2 == 0: | |
cv2.circle(depth_img, tuple(point), 10, (255, 0, 0), -1) | |
else: | |
cv2.circle(depth_img, tuple(point), 10, (0, 0, 255), -1) | |
if idx > 0: | |
line_length = np.sqrt((trajectory_points[idx][0] - trajectory_points[idx-1][0])**2 + (trajectory_points[idx][1] - trajectory_points[idx-1][1])**2) | |
arrow_head_length = 10 | |
tip_length = arrow_head_length / line_length | |
cv2.arrowedLine(depth_img, trajectory_points[idx-1], trajectory_points[idx], (0, 255, 0), 4, tipLength=tip_length) | |
return image, {'image': image}, depth, depth_img, colored_depth[:, :, :3] | |
def draw_points_on_image(img, points): | |
# img = Image.fromarray(np.array(image)) | |
draw = ImageDraw.Draw(img) | |
for p in points: | |
x1, y1, _, x2, y2, _ = p | |
if x2 == 0 and y2 == 0: | |
# Point: 青色点带黑边 | |
point_radius = 4 | |
draw.ellipse( | |
(x1 - point_radius, y1 - point_radius, x1 + point_radius, y1 + point_radius), | |
fill="cyan", outline="black", width=1 | |
) | |
else: | |
# Bounding Box: 黑色矩形框 | |
draw.rectangle([x1, y1, x2, y2], outline="black", width=3) | |
return img | |
def from_examples(raw_input, raw_image_points, canvas, seg_image_points, selected_points_text, camera_option, mask_bk): | |
raw_image_points = ast.literal_eval(raw_image_points) | |
seg_image_points = ast.literal_eval(seg_image_points) | |
selected_points = ast.literal_eval(selected_points_text) | |
mask = np.array(mask_bk) | |
mask = mask[:,:,0] > 0 | |
selected_points = ast.literal_eval(selected_points_text) | |
image, _, depth, depth_img, colored_depth = process_image({'image': raw_input['image'], 'points': raw_image_points}, selected_points) | |
# get camera pose | |
if camera_option == "None": | |
# traj2came | |
rescale = 1.0 | |
camera_pose, camera_pose_vis, rescale, _ = traj2cam(selected_points, depth , rescale) | |
else: | |
rescale = 0.0 | |
angle = 60 | |
speed = 4.0 | |
camera_pose, camera_pose_vis, rescale = get_camera_pose(CAMERA_MODE)(camera_option, depth, mask, rescale, angle, speed) | |
raw_image = draw_points_on_image(raw_input['image'], raw_image_points) | |
seg_image = draw_points_on_image(canvas['image'], seg_image_points) | |
return image, mask, depth, depth_img, colored_depth, camera_pose, \ | |
camera_pose_vis, rescale, selected_points, \ | |
gr.update(value={'image': raw_image, 'points': raw_image_points}), \ | |
gr.update(value={'image': seg_image, 'points': seg_image_points}), \ | |
# -------------- UI definition -------------- | |
with gr.Blocks() as demo: | |
# layout definition | |
gr.Markdown(title) | |
gr.Markdown(authors) | |
gr.Markdown(affiliation) | |
gr.Markdown(important_link) | |
gr.Markdown(description) | |
# with gr.Row(): | |
# gr.Markdown("""# <center>Repositioning the Subject within Image </center>""") | |
mask = gr.State(value=None) # store mask | |
mask_bk = gr.Image(type="pil", label="Mask", show_label=True, interactive=False, visible=False) | |
removal_mask = gr.State(value=None) # store removal mask | |
selected_points = gr.State([]) # store points | |
selected_points_text = gr.Textbox(label="Selected Points", visible=False) | |
raw_image_points = gr.Textbox(label="Raw Image Points", visible=False) | |
seg_image_points = gr.Textbox(label="Segment Image Points", visible=False) | |
original_image = gr.State(value=None) # store original input image | |
# masked_original_image = gr.State(value=None) # store masked input image | |
mask_logits = gr.State(value=None) # store mask logits | |
depth = gr.State(value=None) # store depth | |
org_depth_image = gr.State(value=None) # store original depth image | |
camera_pose = gr.State(value=None) # store camera pose | |
rescale = gr.Slider(minimum=0.0, maximum=10, step=0.1, value=1.0, label="Rescale", interactive=True, visible=False) | |
angle = gr.Slider(minimum=-360, maximum=360, step=1, value=60, label="Angle", interactive=True, visible=False) | |
seed = gr.Textbox(value = "42", label="Seed", interactive=True, visible=False) | |
scale_wise_masks = gr.Checkbox(label="Enable Scale-wise Masks", interactive=True, value=True, visible=False) | |
ds = gr.Slider(minimum=0.0, maximum=1, step=0.1, value=0.25, label="ds", interactive=True, visible=False) | |
dt = gr.Slider(minimum=0.0, maximum=1, step=0.1, value=0.1, label="dt", interactive=True, visible=False) | |
with gr.Column(): | |
outlines = """ | |
<font size="5"><b>There are total 5 steps to complete the task.</b></font> | |
- Step 1: Input an image and Crop it to a suitable size and attained depth; | |
- Step 2: Attain the subject mask; | |
- Step 3: Draw trajectory on depth map or skip to use camera pose; | |
- Step 4: Select camera poses or skip. | |
- Step 5: Generate the final video. | |
""" | |
gr.Markdown(outlines) | |
with gr.Row(): | |
with gr.Column(): | |
# Step 1: Input Image | |
step1_dec = """ | |
<font size="4"><b>Step 1: Input Image</b></font> | |
""" | |
step1 = gr.Markdown(step1_dec) | |
raw_input = ImagePrompter(type="pil", label="Raw Image", show_label=True, interactive=True) | |
step1_notes = """ | |
- Select the region using a <mark>bounding box</mark>, aiming for a ratio close to </mark>320:576</mark> (height:width). | |
- If the input is in 320 x 576, press `Process` directly. | |
""" | |
notes = gr.Markdown(step1_notes) | |
process_button = gr.Button("Process") | |
with gr.Column(): | |
# Step 2: Get Subject Mask | |
step2_dec = """ | |
<font size="4"><b>Step 2: Get Subject Mask</b></font> | |
""" | |
step2 = gr.Markdown(step2_dec) | |
canvas = ImagePrompter(type="pil", label="Input Image", show_label=True, interactive=True) # for mask painting | |
step2_notes = """ | |
- Use the <mark>bounding boxes</mark> or <mark>points</mark> to select the subject. | |
- Press `Segment Subject` to get the mask. <mark>Can be refined iteratively by updating points<mark>. | |
""" | |
notes = gr.Markdown(step2_notes) | |
select_button = gr.Button("Segment Subject") | |
with gr.Column(): | |
# Step 3: Get Depth and Draw Trajectory | |
step3_dec = """ | |
<font size="4"><b>Step 3: Draw Trajectory on Depth or <mark>SKIP</mark></b></font> | |
""" | |
step3 = gr.Markdown(step3_dec) | |
depth_image = gr.Image(type="pil", label="Depth Image", show_label=True, interactive=False) | |
step3_dec = """ | |
- Selecting points on the depth image. <mark>No more than 14 points</mark>. | |
- Press `Undo point` to remove all points. Press `Traj2Cam` to get camera poses. | |
""" | |
notes = gr.Markdown(step3_dec) | |
undo_button = gr.Button("Undo point") | |
traj2cam_button = gr.Button("Traj2Cam") | |
with gr.Row(): | |
with gr.Column(): | |
# Step 4: Trajectory to Camera Pose or Get Camera Pose | |
step4_dec = """ | |
<font size="4"><b>Step 4: Get Customized Camera Poses or <mark>SKIP</mark></b></font> | |
""" | |
step4 = gr.Markdown(step4_dec) | |
camera_pose_vis = gr.Plot(None, label='Camera Pose') | |
camera_option = gr.Radio(choices = CAMERA_MODE, label='Camera Options', value=CAMERA_MODE[0], interactive=True) | |
speed = gr.Slider(minimum=0.1, maximum=10, step=0.1, value=4.0, label="Speed", interactive=True, visible=True) | |
with gr.Column(): | |
# Step 5: Get the final generated video | |
step5_dec = """ | |
<font size="4"><b>Step 5: Get the Final Generated Video</b></font> | |
""" | |
step5 = gr.Markdown(step5_dec) | |
generated_video = gr.Video(None, label='Generated Video') | |
# with gr.Row(): | |
bg_mode = gr.Radio(choices = ["Fixed", "Reverse", "Free"], label="Background Mode", value="Fixed", interactive=True) | |
shared_wapring_latents = gr.Checkbox(label="Enable Shared Warping Latents", interactive=True, value=False, visible=True) | |
generated_button = gr.Button("Generate") | |
get_mid_params_button = gr.Button("Get Mid Params", visible=False) | |
# # event definition | |
process_button.click( | |
fn = process_image, | |
inputs = [raw_input, selected_points], | |
outputs = [original_image, canvas, depth, depth_image, org_depth_image] | |
) | |
select_button.click( | |
segment, | |
[canvas, original_image, mask_logits], | |
[mask, canvas, mask_logits] | |
) | |
depth_image.select( | |
get_points, | |
[depth_image, selected_points], | |
[depth_image, selected_points], | |
) | |
undo_button.click( | |
undo_points, | |
[org_depth_image], | |
[depth_image, selected_points] | |
) | |
traj2cam_button.click( | |
traj2cam, | |
[selected_points, depth, rescale], | |
[camera_pose, camera_pose_vis, rescale, camera_option] | |
) | |
camera_option.change( | |
get_camera_pose(CAMERA_MODE), | |
[camera_option, depth, mask, rescale, angle, speed], | |
[camera_pose, camera_pose_vis, rescale] | |
) | |
generated_button.click( | |
run_objctrl_2_5d, | |
[ | |
original_image, | |
mask, | |
depth, | |
camera_pose, | |
bg_mode, | |
shared_wapring_latents, | |
scale_wise_masks, | |
rescale, | |
seed, | |
ds, | |
dt, | |
# num_inference_steps | |
], | |
[generated_video], | |
) | |
get_mid_params_button.click( | |
get_mid_params, | |
[raw_input, canvas, mask, selected_points, camera_option, bg_mode, shared_wapring_latents, generated_video] | |
) | |
## Get examples | |
with open('./assets/examples/examples.json', 'r') as f: | |
examples = json.load(f) | |
# print(examples) | |
# examples = [examples] | |
examples = [v for k, v in examples.items()] | |
gr.Examples( | |
examples=examples, | |
inputs=[ | |
raw_input, | |
raw_image_points, | |
canvas, | |
seg_image_points, | |
mask_bk, | |
selected_points_text, # selected_points | |
camera_option, | |
bg_mode, | |
shared_wapring_latents, | |
generated_video | |
], | |
examples_per_page=20 | |
) | |
selected_points_text.change( | |
from_examples, | |
inputs=[raw_input, raw_image_points, canvas, seg_image_points, selected_points_text, camera_option, mask_bk], | |
outputs=[original_image, mask, depth, depth_image, org_depth_image, camera_pose, camera_pose_vis, rescale, selected_points, raw_input, canvas] | |
) | |
gr.Markdown(article) | |
demo.queue().launch(share=True) | |