Spaces:
Sleeping
Sleeping
File size: 9,743 Bytes
df8f6a6 d44f4fb df8f6a6 781750e dc293d0 df8f6a6 752d508 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
# Thank you to the authors of seewav for dedicating it into the public domain.
# This program is also dedicated into the public domain.
# You may use it, at your choice, under the Unlicense, CC0, or WTFPL license.
# Enjoy!
# Mostly from: https://github.com/adefossez/seewav
# Original author: adefossez
import math
import tempfile
from pathlib import Path
import subprocess
import cairo
import numpy as np
import gradio as gr
from pydub import AudioSegment
def read_audio(audio, seek=None, duration=None):
"""
Read the `audio` file, starting at `seek` (or 0) seconds for `duration` (or all) seconds.
Returns `float[channels, samples]`.
"""
audio_segment = AudioSegment.from_file(audio)
channels = audio_segment.channels
samplerate = audio_segment.frame_rate
if seek is not None:
seek_ms = int(seek * 1000)
audio_segment = audio_segment[seek_ms:]
if duration is not None:
duration_ms = int(duration * 1000)
audio_segment = audio_segment[:duration_ms]
samples = audio_segment.get_array_of_samples()
wav = np.array(samples, dtype=np.float32)
return wav.reshape(channels, -1), samplerate
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def envelope(wav, window, stride):
"""
Extract the envelope of the waveform `wav` (float[samples]), using average pooling
with `window` samples and the given `stride`.
"""
# pos = np.pad(np.maximum(wav, 0), window // 2)
wav = np.pad(wav, window // 2)
out = []
for off in range(0, len(wav) - window, stride):
frame = wav[off : off + window]
out.append(np.maximum(frame, 0).mean())
out = np.array(out)
# Some form of audio compressor based on the sigmoid.
out = 1.9 * (sigmoid(2.5 * out) - 0.5)
return out
def draw_env(envs, out, fg_colors, bg_color, size):
"""
Internal function, draw a single frame (two frames for stereo) using cairo and save
it to the `out` file as png. envs is a list of envelopes over channels, each env
is a float[bars] representing the height of the envelope to draw. Each entry will
be represented by a bar.
"""
surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, *size)
ctx = cairo.Context(surface)
ctx.scale(*size)
ctx.set_source_rgb(*bg_color)
ctx.rectangle(0, 0, 1, 1)
ctx.fill()
K = len(envs) # Number of waves to draw (waves are stacked vertically)
T = len(envs[0]) # Numbert of time steps
pad_ratio = 0.1 # spacing ratio between 2 bars
width = 1.0 / (T * (1 + 2 * pad_ratio))
pad = pad_ratio * width
delta = 2 * pad + width
ctx.set_line_width(width)
for step in range(T):
for i in range(K):
half = 0.5 * envs[i][step] # (semi-)height of the bar
half /= K # as we stack K waves vertically
midrule = (1 + 2 * i) / (2 * K) # midrule of i-th wave
ctx.set_source_rgb(*fg_colors[i])
ctx.move_to(pad + step * delta, midrule - half)
ctx.line_to(pad + step * delta, midrule)
ctx.stroke()
ctx.set_source_rgba(*fg_colors[i], 0.8)
ctx.move_to(pad + step * delta, midrule)
ctx.line_to(pad + step * delta, midrule + 0.9 * half)
ctx.stroke()
surface.write_to_png(out)
def interpole(x1, y1, x2, y2, x):
return y1 + (y2 - y1) * (x - x1) / (x2 - x1)
def visualize(
progress,
audio,
tmp,
out,
seek=None,
duration=None,
rate=60,
bars=50,
speed=4,
time=0.4,
oversample=3,
fg_color=(0.2, 0.2, 0.2),
fg_color2=(0.5, 0.3, 0.6),
bg_color=(1, 1, 1),
size=(400, 400),
stereo=False,
):
"""
Generate the visualisation for the `audio` file, using a `tmp` folder and saving the final
video in `out`.
`seek` and `durations` gives the extract location if any.
`rate` is the framerate of the output video.
`bars` is the number of bars in the animation.
`speed` is the base speed of transition. Depending on volume, actual speed will vary
between 0.5 and 2 times it.
`time` amount of audio shown at once on a frame.
`oversample` higher values will lead to more frequent changes.
`fg_color` is the rgb color to use for the foreground.
`fg_color2` is the rgb color to use for the second wav if stereo is set.
`bg_color` is the rgb color to use for the background.
`size` is the `(width, height)` in pixels to generate.
`stereo` is whether to create 2 waves.
"""
try:
wav, sr = read_audio(audio, seek=seek, duration=duration)
except (IOError, ValueError) as err:
raise gr.Error(err)
# wavs is a list of wav over channels
wavs = []
if stereo:
assert wav.shape[0] == 2, "stereo requires stereo audio file"
wavs.append(wav[0])
wavs.append(wav[1])
else:
wav = wav.mean(0)
wavs.append(wav)
for i, wav in enumerate(wavs):
wavs[i] = wav / wav.std()
window = int(sr * time / bars)
stride = int(window / oversample)
# envs is a list of env over channels
envs = []
for wav in wavs:
env = envelope(wav, window, stride)
env = np.pad(env, (bars // 2, 2 * bars))
envs.append(env)
duration = len(wavs[0]) / sr
frames = int(rate * duration)
smooth = np.hanning(bars)
gr.Info("Generating the frames...")
for idx in progress(range(frames)):
pos = (((idx / rate)) * sr) / stride / bars
off = int(pos)
loc = pos - off
denvs = []
for env in envs:
env1 = env[off * bars : (off + 1) * bars]
env2 = env[(off + 1) * bars : (off + 2) * bars]
# we want loud parts to be updated faster
maxvol = math.log10(1e-4 + env2.max()) * 10
speedup = np.clip(interpole(-6, 0.5, 0, 2, maxvol), 0.5, 2)
w = sigmoid(speed * speedup * (loc - 0.5))
denv = (1 - w) * env1 + w * env2
denv *= smooth
denvs.append(denv)
draw_env(denvs, tmp / f"{idx:06d}.png", (fg_color, fg_color2), bg_color, size)
gr.Info("Encoding the animation video...")
subprocess.run([
"ffmpeg", "-y", "-loglevel", "panic", "-r",
str(rate), "-f", "image2", "-s", f"{size[0]}x{size[1]}", "-i", "%06d.png", "-i", audio, "-c:a", "aac", "-vcodec", "libx264", "-crf", "10", "-pix_fmt", "yuv420p",
out.resolve()
], check=True, cwd=tmp)
return out
def parse_color(colorstr):
"""
Given a comma separated rgb(a) colors, returns a 4-tuple of float.
"""
try:
r, g, b = [float(i) for i in colorstr.split(",")]
return r, g, b
except ValueError:
raise gr.Error(
"Format for color is 3 floats separated by commas 0.xx,0.xx,0.xx, rgb order"
)
def hex_to_rgb(hex_color):
hex_color = hex_color.lstrip('#')
r = int(hex_color[0:2], 16) / 255.0
g = int(hex_color[2:4], 16) / 255.0
b = int(hex_color[4:6], 16) / 255.0
return (r, g, b)
def do_viz(
inp_aud,
inp_bgcolor,
inp_color1,
inp_nbars,
inp_vidw,
inp_vidh,
progress=gr.Progress(),
):
with tempfile.TemporaryDirectory() as tmp, tempfile.NamedTemporaryFile(
suffix=".mp4",
delete=False
) as out:
return visualize(
progress.tqdm,
inp_aud,
Path(tmp),
Path(out.name),
bars=inp_nbars,
fg_color=hex_to_rgb(inp_color1),
bg_color=hex_to_rgb(inp_bgcolor),
size=(inp_vidw, inp_vidh),
)
import gradio as gr
ABOUT = """
# seewav GUI
> Have an audio clip but need a video (e.g. for X/Twitter)?
**Convert audio into a nice video!**
An online graphical user interface for [seewav](https://github.com/adefossez/seewav).
Enjoy!
"""
with gr.Blocks() as demo:
gr.Markdown(ABOUT)
with gr.Row():
with gr.Column():
inp_aud = gr.Audio(type='filepath')
with gr.Group():
inp_color1 = gr.ColorPicker(
label="Color",
info="Color of the top waveform",
value="#00237E",
interactive=True,
)
inp_bgcolor = gr.ColorPicker(
label="Background Color",
info="Color of the background",
value="#000000",
interactive=True,
)
with gr.Accordion("Advanced Configuration", open=False):
inp_nbars = gr.Slider(
label="Num. Bars",
value=50,
interactive=True,
minimum=5,
maximum=1500,
)
inp_vidw = gr.Slider(
label="Video Width",
value=400,
interactive=True,
minimum=100,
maximum=3000,
)
inp_vidh = gr.Slider(
label="Video Height",
value=400,
interactive=True,
minimum=100,
maximum=3000,
)
inp_go = gr.Button("Visualize", variant="primary")
with gr.Column():
out_vid = gr.Video(interactive=False)
inp_go.click(
do_viz,
inputs=[
inp_aud,
inp_bgcolor,
inp_color1,
inp_nbars,
inp_vidw,
inp_vidh,
],
outputs=[out_vid],
)
demo.queue(api_open=True, default_concurrency_limit=20).launch(show_api=True) |