File size: 9,272 Bytes
129413a
 
 
42b930d
6181e1d
129413a
e7d12f5
8f4c543
e7d12f5
6181e1d
 
dc62671
 
 
 
 
129413a
a35571e
187265b
 
 
 
 
dc2b319
 
 
187265b
 
 
 
72f2f88
05eceeb
b7f3190
 
 
 
 
05eceeb
1beff8d
187265b
87e586e
 
 
 
 
6bfce88
028e7df
 
fb7a592
87e586e
d5139bf
87e586e
d5139bf
fb7a592
 
 
 
1beff8d
129413a
87e586e
129413a
b8480bb
129413a
028e7df
 
 
 
 
 
 
 
 
 
 
 
8f4c543
6bfce88
fb7a592
6bfce88
fb7a592
87e586e
d5139bf
87e586e
d5139bf
fb7a592
 
 
 
 
8f4c543
87e586e
8f4c543
 
efe4a11
8f4c543
 
 
fb7a592
 
ea86efe
 
 
fb7a592
 
8f4c543
 
6181e1d
8f4c543
 
 
 
efe4a11
 
 
 
8f4c543
efe4a11
8f4c543
 
 
 
 
 
028e7df
ea86efe
 
 
 
 
 
fb7a592
 
dc62671
fb7a592
 
 
 
 
 
dc62671
fb7a592
 
 
 
 
 
 
 
dc62671
fb7a592
 
 
 
 
 
 
 
dc62671
fb7a592
 
 
 
 
 
 
 
dc62671
fb7a592
 
 
 
dc62671
 
ea86efe
 
 
dc62671
ec73d16
ea86efe
dc62671
 
 
 
 
efe4a11
ea86efe
dc019e5
ea86efe
 
dc62671
ec73d16
ea86efe
dc62671
 
 
 
 
efe4a11
ea86efe
dc62671
fb7a592
8f4c543
 
 
 
6bfce88
ea86efe
 
8f4c543
ea86efe
6bfce88
ea86efe
 
 
8c7d524
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import json 
import gradio as gr
import os
import requests
from huggingface_hub import AsyncInferenceClient

HF_TOKEN = os.getenv('HF_TOKEN')
api_url = os.getenv('API_URL')
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
client = AsyncInferenceClient(api_url)

PLACEHOLDER = '''
<h2>Important Notice</h2>
<p>Thank you for your interest in <strong>"Explore_llamav2_with_TGI".</strong> This space is no longer active. We encourage you to explore our other popular Llama2 Spaces, linked in the description above, for similar content and resources.</p>
<p>We appreciate your understanding and continued support.</p>
'''
system_message = "\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."
title = "Llama2 70B Chatbot"
description = """
This Space demonstrates model [Llama-2-70b-chat-hf](https://huggingface.co./meta-llama/Llama-2-70b-chat-hf) by Meta, a Llama 2 model with 70B parameters fine-tuned for chat instructions. This space is running on Inference Endpoints using text-generation-inference library. If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://ui.endpoints.huggingface.co/).

πŸ”Ž For more details about the Llama 2 family of models and how to use them with `transformers`, take a look [at our blog post](https://huggingface.co./blog/llama2).

πŸ”¨ Looking for lighter chat model versions of Llama-v2? 
- πŸ‡ Check out the [7B Chat model demo](https://huggingface.co./spaces/huggingface-projects/llama-2-7b-chat).
- 🦊 Check out the [13B Chat model demo](https://huggingface.co./spaces/huggingface-projects/llama-2-13b-chat).

Note: As a derivate work of [Llama-2-70b-chat](https://huggingface.co./meta-llama/Llama-2-70b-chat-hf) by Meta,
this demo is governed by the original [license](https://huggingface.co./spaces/ysharma/Explore_llamav2_with_TGI/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co./spaces/ysharma/Explore_llamav2_with_TGI/blob/main/USE_POLICY.md).
"""
css = """.toast-wrap { display: none !important } """
examples=[
    ['Hello there! How are you doing?'],
    ['Can you explain to me briefly what is Python programming language?'],
    ['Explain the plot of Cinderella in a sentence.'],
    ['How many hours does it take a man to eat a Helicopter?'],
    ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
    ]


# Note: We have removed default system prompt as requested by the paper authors [Dated: 13/Oct/2023]
# Prompting style for Llama2 without using system prompt
# <s>[INST] {{ user_msg_1 }} [/INST] {{ model_answer_1 }} </s><s>[INST] {{ user_msg_2 }} [/INST]


# Stream text - stream tokens with InferenceClient from TGI
async def predict(message, chatbot, system_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.6, repetition_penalty=1.0,):
    
    if system_prompt != "":
        input_prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n "
    else:
        input_prompt = f"<s>[INST] "
        
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)
    
    for interaction in chatbot:
        input_prompt = input_prompt + str(interaction[0]) + " [/INST] " + str(interaction[1]) + " </s><s>[INST] "

    input_prompt = input_prompt + str(message) + " [/INST] "

    partial_message = ""
    async for token in await client.text_generation(prompt=input_prompt, 
                                    max_new_tokens=max_new_tokens, 
                                    stream=True, 
                                    best_of=1, 
                                    temperature=temperature, 
                                    top_p=top_p, 
                                    do_sample=True, 
                                    repetition_penalty=repetition_penalty):
        partial_message = partial_message + token 
        yield partial_message
        

# No Stream - batch produce tokens using TGI inference endpoint
def predict_batch(message, chatbot, system_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.6, repetition_penalty=1.0,):
    
    if system_prompt != "":
        input_prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n "
    else:
        input_prompt = f"<s>[INST] "
        
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)
    
    for interaction in chatbot:
        input_prompt = input_prompt + str(interaction[0]) + " [/INST] " + str(interaction[1]) + " </s><s>[INST] "

    input_prompt = input_prompt + str(message) + " [/INST] "
    print(f"input_prompt - {input_prompt}")

    data = {
        "inputs": input_prompt,
        "parameters": {
            "max_new_tokens":max_new_tokens,
            "temperature":temperature,
            "top_p":top_p,
            "repetition_penalty":repetition_penalty, 
            "do_sample":True,
        },
    }

    response = requests.post(api_url, headers=headers,  json=data ) #auth=('hf', hf_token)) data=json.dumps(data),
    
    if response.status_code == 200:  # check if the request was successful
        try:
            json_obj = response.json()
            if 'generated_text' in json_obj[0] and len(json_obj[0]['generated_text']) > 0:
                return json_obj[0]['generated_text']
            elif 'error' in json_obj[0]:
                return json_obj[0]['error'] + ' Please refresh and try again with smaller input prompt'
            else:
                print(f"Unexpected response: {json_obj[0]}")
        except json.JSONDecodeError:
            print(f"Failed to decode response as JSON: {response.text}")
    else:
        print(f"Request failed with status code {response.status_code}")



def vote(data: gr.LikeData):
    if data.liked:
        print("You upvoted this response: " + data.value)
    else:
        print("You downvoted this response: " + data.value)
        

additional_inputs=[
    gr.Textbox("", label="Optional system prompt", interactive=False),
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=False,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=256,
        minimum=0,
        maximum=4096,
        step=64,
        interactive=False,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.6,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=False,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=False,
        info="Penalize repeated tokens",
    )
]

chatbot_stream = gr.Chatbot(avatar_images=('user.png', 'bot2.png'),bubble_full_width = False, placeholder=PLACEHOLDER)
chatbot_batch = gr.Chatbot(avatar_images=('user1.png', 'bot1.png'),bubble_full_width = False, placeholder=PLACEHOLDER)
chat_interface_stream = gr.ChatInterface(predict, 
                 title=title, 
                 description=description, 
                 textbox=gr.Textbox(interactive=False),
                 chatbot=chatbot_stream,
                 css=css, 
                 submit_btn = gr.Button('Submit', interactive=False),
                 retry_btn = gr.Button('πŸ”„ Retry', interactive=False),
                 undo_btn = gr.Button('↩️ Undo', interactive=False),
                 clear_btn = gr.Button('πŸ—‘οΈ Clear', interactive=False),
                 #examples=examples, 
                 #cache_examples=True, 
                 additional_inputs=additional_inputs,) 
chat_interface_batch=gr.ChatInterface(predict_batch, 
                 title=title, 
                 description=description, 
                 textbox=gr.Textbox(interactive=False),
                 chatbot=chatbot_batch,
                 css=css, 
                 submit_btn = gr.Button('Submit', interactive=False),
                 retry_btn = gr.Button('πŸ”„ Retry', interactive=False),
                 undo_btn = gr.Button('↩️ Undo', interactive=False),
                 clear_btn = gr.Button('πŸ—‘οΈ Clear', interactive=False),
                 #examples=examples, 
                 #cache_examples=True, 
                 additional_inputs=additional_inputs,) 
 

# Gradio Demo 
with gr.Blocks() as demo:

    with gr.Tab("Streaming"):
        # streaming chatbot
        chatbot_stream.like(vote, None, None)
        chat_interface_stream.render()

    with gr.Tab("Batch"):
        # non-streaming chatbot
        chatbot_batch.like(vote, None, None)
        chat_interface_batch.render()
        
demo.queue(max_size=100).launch()