# This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_seg2image.py # The original license file is LICENSE.ControlNet in this repo. import gradio as gr from PIL import Image #first elem of gallery is ^^ - {'name': '/tmp/tmpw60bbw6k.png', 'data': 'file=/tmp/tmpw60bbw6k.png', 'is_file': True} #first elem of gallery is ^^ - {'name': '/tmp/tmpba0d5dt5.png', 'data': 'file=/tmp/tmpba0d5dt5.png', 'is_file': True} import numpy as np import base64 def encode(input_image): print(f"type of input_image ^^ - {type(input_image)}") # Convert NumPy array to bytes img_bytes = np.ndarray.tobytes(input_image) # Encode the bytes using Base64 encoded_string = base64.b64encode(img_bytes).decode('utf-8') # Print and return the encoded string #print(encoded_string) return encoded_string def create_imgcomp(input_image, filename): encoded_string = encode(input_image) htmltag = 'Original Image Control Net Image' #https://ysharma-controlnetsegmentation.hf.space/file=/tmp/tmpqcz9yeta.png print(f"htmltag is ^^ - {htmltag}") desc = """

Testing image comp

""" + htmltag + "
" return desc def dummyfun(result_gallery): print(f"type of gallery is ^^ - {type(result_gallery)}") print(f"length of gallery is ^^ - {len(result_gallery)}") print(f"first elem of gallery is ^^ - {result_gallery[0]}") print(f"first elem of gallery is ^^ - {result_gallery[1]}") # Load the image #image = result_gallery[1] #Image.open("example.jpg") # Get the filename #filename = image.filename # Print the filename #print(f"filename is ^^ - {filename}") return result_gallery[1]['name'] #+ ',' + result_gallery[1]['name'] #filename def create_demo(process, max_images=12): with gr.Blocks() as demo: with gr.Row(): gr.Markdown('## Control Stable Diffusion with Segmentation Maps') with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type='numpy') prompt = gr.Textbox(label='Prompt') run_button = gr.Button(label='Run') with gr.Accordion('Advanced options', open=False): num_samples = gr.Slider(label='Images', minimum=1, maximum=max_images, value=1, step=1) image_resolution = gr.Slider(label='Image Resolution', minimum=256, maximum=768, value=512, step=256) detect_resolution = gr.Slider( label='Segmentation Resolution', minimum=128, maximum=1024, value=512, step=1) ddim_steps = gr.Slider(label='Steps', minimum=1, maximum=100, value=20, step=1) scale = gr.Slider(label='Guidance Scale', minimum=0.1, maximum=30.0, value=9.0, step=0.1) seed = gr.Slider(label='Seed', minimum=-1, maximum=2147483647, step=1, randomize=True, queue=False) eta = gr.Number(label='eta (DDIM)', value=0.0) a_prompt = gr.Textbox( label='Added Prompt', value='best quality, extremely detailed') n_prompt = gr.Textbox( label='Negative Prompt', value= 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' ) with gr.Column(): result_gallery = gr.Gallery(label='Output', #visible= False, show_label=False, elem_id='gallery').style( grid=2, height='auto') b1 = gr.Button('Get filenames') filename = gr.Textbox(label="image file names") b2 = gr.Button('Show Image-Comparison') imagecomp = gr.HTML() ips = [ input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed, eta ] run_button.click(fn=process, inputs=ips, outputs=[result_gallery], api_name='seg') b1.click(dummyfun, [result_gallery], [filename]) b2.click(create_imgcomp, [input_image, filename], [imagecomp]) return demo