File size: 7,025 Bytes
7e2107f
 
 
8883856
7e2107f
b8d115d
 
 
c3c9e9f
 
 
 
497205a
c3c9e9f
497205a
c3c9e9f
 
 
 
 
 
 
 
 
 
bf83dea
c3c9e9f
bf83dea
c3c9e9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf83dea
 
c3c9e9f
 
 
 
8883856
 
 
 
 
 
b8d115d
8883856
 
b8d115d
8883856
 
b8d115d
c3c9e9f
7e2107f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
497205a
7e2107f
 
 
8883856
 
c3c9e9f
5bb2709
7e2107f
 
 
 
 
 
 
 
8883856
c3c9e9f
8883856
c3c9e9f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_seg2image.py
# The original license file is LICENSE.ControlNet in this repo.
import gradio as gr
from PIL import Image

#first elem of gallery is ^^ - {'name': '/tmp/tmpw60bbw6k.png', 'data': 'file=/tmp/tmpw60bbw6k.png', 'is_file': True}
#first elem of gallery is ^^ - {'name': '/tmp/tmpba0d5dt5.png', 'data': 'file=/tmp/tmpba0d5dt5.png', 'is_file': True}

import numpy as np
import base64

def encode(input_image):
    print(f"type of input_image ^^ - {type(input_image)}")
    # Convert NumPy array to bytes
    img_bytes = np.ndarray.tobytes(input_image)

    # Encode the bytes using Base64
    encoded_string = base64.b64encode(img_bytes).decode('utf-8')

    # Print and return the encoded string
    #print(encoded_string)
    return encoded_string

def create_imgcomp(input_image, filename):
    encoded_string = encode(input_image)
    htmltag = '<img src= "data:image/jpeg;base64,' + encoded_string + '" alt="Original Image"/></div> <img src= "https://ysharma-ControlNetSegmentation.hf.space/file=' + filename + '" alt="Control Net Image"/>'
    #https://ysharma-controlnetsegmentation.hf.space/file=/tmp/tmpqcz9yeta.png
    print(f"htmltag is ^^ - {htmltag}")
    desc = """
        <!DOCTYPE html>
        <html lang="en">
        <head>
        	<style>
        		body {
        			background: rgb(17, 17, 17);
        		}
        		
        		.image-slider {
        			margin-left: 3rem;
        			position: relative;
        			display: inline-block;
        			line-height: 0;
        		}
        		
        		.image-slider img {
        			user-select: none;
        			max-width: 400px;
        		}
        		
        		.image-slider > div {
        			position: absolute;
        			width: 25px;
        			max-width: 100%;
        			overflow: hidden;
        			resize: horizontal;
        		}
        		
        		.image-slider > div:before {
        			content: '';
        			display: block;
        			width: 13px;
        			height: 13px;
        			overflow: hidden;
        			position: absolute;
        			resize: horizontal;
        			right: 3px;
        			bottom: 3px;
        			background-clip: content-box;
        			background: linear-gradient(-45deg, black 50%, transparent 0);
        			-webkit-filter: drop-shadow(0 0 2px black);
        			filter: drop-shadow(0 0 2px black);
        		}
        	</style>
        </head>
        <body>
        	<div style="margin: 3rem;
        				font-family: Roboto, sans-serif">
        		<h1 style="color: green"> Testing image comp</h1>
        		</div> <div> <div class="image-slider"> <div> """ + htmltag + "</div> </div> </body> </html> "
    return desc



def dummyfun(result_gallery):
    print(f"type of gallery is ^^ - {type(result_gallery)}")
    print(f"length of gallery is ^^ - {len(result_gallery)}")
    print(f"first elem of gallery is ^^ - {result_gallery[0]}")
    print(f"first elem of gallery is ^^ - {result_gallery[1]}")
    # Load the image
    #image = result_gallery[1] #Image.open("example.jpg")
    
    # Get the filename
    #filename = image.filename
    
    # Print the filename
    #print(f"filename is ^^ - {filename}")
    return result_gallery[1]['name'] #+ ',' + result_gallery[1]['name'] #filename

def create_demo(process, max_images=12):
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown('## Control Stable Diffusion with Segmentation Maps')
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(source='upload', type='numpy')
                prompt = gr.Textbox(label='Prompt')
                run_button = gr.Button(label='Run')
                with gr.Accordion('Advanced options', open=False):
                    num_samples = gr.Slider(label='Images',
                                            minimum=1,
                                            maximum=max_images,
                                            value=1,
                                            step=1)
                    image_resolution = gr.Slider(label='Image Resolution',
                                                 minimum=256,
                                                 maximum=768,
                                                 value=512,
                                                 step=256)
                    detect_resolution = gr.Slider(
                        label='Segmentation Resolution',
                        minimum=128,
                        maximum=1024,
                        value=512,
                        step=1)
                    ddim_steps = gr.Slider(label='Steps',
                                           minimum=1,
                                           maximum=100,
                                           value=20,
                                           step=1)
                    scale = gr.Slider(label='Guidance Scale',
                                      minimum=0.1,
                                      maximum=30.0,
                                      value=9.0,
                                      step=0.1)
                    seed = gr.Slider(label='Seed',
                                     minimum=-1,
                                     maximum=2147483647,
                                     step=1,
                                     randomize=True,
                                     queue=False)
                    eta = gr.Number(label='eta (DDIM)', value=0.0)
                    a_prompt = gr.Textbox(
                        label='Added Prompt',
                        value='best quality, extremely detailed')
                    n_prompt = gr.Textbox(
                        label='Negative Prompt',
                        value=
                        'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
                    )
            with gr.Column():
                result_gallery = gr.Gallery(label='Output', #visible= False, 
                                            show_label=False,
                                            elem_id='gallery').style(
                                                grid=2, height='auto')
                b1 = gr.Button('Get filenames')
                filename = gr.Textbox(label="image file names")
                b2 = gr.Button('Show Image-Comparison')
                imagecomp = gr.HTML() 
        ips = [
            input_image, prompt, a_prompt, n_prompt, num_samples,
            image_resolution, detect_resolution, ddim_steps, scale, seed, eta
        ]
        run_button.click(fn=process,
                         inputs=ips,
                         outputs=[result_gallery],
                         api_name='seg')
        b1.click(dummyfun, [result_gallery], [filename])
        b2.click(create_imgcomp, [input_image, filename], [imagecomp])
        
    return demo