File size: 4,801 Bytes
9887d4c 099c99b 9887d4c ef1c0b9 9887d4c 93fd450 af079bb 93fd450 af079bb b3b1ca1 b39d4ca 7acfd95 9887d4c 93fd450 af079bb 93fd450 af079bb 9887d4c ef1c0b9 5ddbee5 9887d4c 5072f90 9887d4c 5072f90 9887d4c cc280c7 9887d4c 621bbdc 5769334 25f07f0 9887d4c 099c99b 9887d4c 099c99b 9887d4c 099c99b 9887d4c 099c99b 9887d4c 621bbdc 9887d4c 5ddbee5 4dd28e3 944abe8 5ddbee5 9887d4c f8ac431 9887d4c 5072f90 9887d4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import gradio as gr
import numpy as np
import random
from diffusers import AuraFlowPipeline
import torch
import spaces
device = "cuda" if torch.cuda.is_available() else "cpu"
#torch.set_float32_matmul_precision("high")
#torch._inductor.config.conv_1x1_as_mm = True
#torch._inductor.config.coordinate_descent_tuning = True
#torch._inductor.config.epilogue_fusion = False
#torch._inductor.config.coordinate_descent_check_all_directions = True
pipe = AuraFlowPipeline.from_pretrained(
"fal/AuraFlow",
torch_dtype=torch.float16
).to("cuda")
#pipe.transformer.to(memory_format=torch.channels_last)
#pipe.vae.to(memory_format=torch.channels_last)
#pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
#pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU
def infer(prompt, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
width=width,
height=height,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
generator = generator
).images[0]
return image, seed
examples = [
"A photo of a lavender cat",
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# AuraFlow 0.1
Demo of the [AuraFlow 0.1](https://huggingface.co./fal/AuraFlow) 6.8B parameters open source diffusion transformer model
[[blog](https://blog.fal.ai/auraflow/)] [[model](https://huggingface.co./fal/AuraFlow)] [[fal](https://fal.ai/models/fal-ai/aura-flow)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
fn = infer,
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
demo.queue().launch() |