yoon / app.py
yoon6173's picture
dd
ca5c6c0
import requests
import torch
from PIL import Image
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
from IPython.display import display
import torchvision.transforms as T
import gradio as gr
def greet(url):
# load Mask2Former fine-tuned on Cityscapes semantic segmentation
processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-large-cityscapes-semantic")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-large-cityscapes-semantic")
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# model predicts class_queries_logits of shape `(batch_size, num_queries)`
# and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to processor for postprocessing
predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
# we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs)
# predicted_semantic_map์„ 8๋น„ํŠธ ๋ถ€ํ˜ธ ์—†๋Š” ์ •์ˆ˜๋กœ ๋ณ€ํ™˜
# ์ด๋ฏธ์ง€๋ฅผ ๋ถ€ํ˜ธ ์—†๋Š” 8๋น„ํŠธ ์ •์ˆ˜๋กœ ๋ณ€ํ™˜ (0์—์„œ 255 ์‚ฌ์ด์˜ ๊ฐ’์œผ๋กœ ์Šค์ผ€์ผ๋ง)
predicted_semantic_map_scaled = (predicted_semantic_map - predicted_semantic_map.min()) / (predicted_semantic_map.max() - predicted_semantic_map.min()) * 255
predicted_semantic_map_uint8 = predicted_semantic_map_scaled.to(torch.uint8)
tensor_to_pil = T.ToPILImage()
image = tensor_to_pil(predicted_semantic_map_uint8)
return image
url = "http://www.apparelnews.co.kr/upfiles/manage/202302/5d5f694177b26fc86e5db623bf7ae4b7.jpg"
#greet(url)
iface = gr.Interface(
fn=greet,
inputs=gr.Image(value=url),
live=True
)
iface.launch(debug = True)