Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
2cb5324
1
Parent(s):
add5814
initial commit
Browse files- .gitattributes +3 -0
- app.py +517 -0
- globe.py +39 -0
- latex.png +3 -0
- multi_box.png +3 -0
- render.py +119 -0
- render_tools/content-mmd-to-html.html +39 -0
- render_tools/tikz.html +17 -0
- requirements.txt +7 -0
- sheet_music.png +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
latex.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
multi_box.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
sheet_music.png filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,517 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
import shutil
|
5 |
+
import time
|
6 |
+
import uuid
|
7 |
+
from pathlib import Path
|
8 |
+
|
9 |
+
import cv2
|
10 |
+
import gradio as gr
|
11 |
+
import numpy as np
|
12 |
+
import spaces
|
13 |
+
import torch
|
14 |
+
from globe import description, title
|
15 |
+
from PIL import Image
|
16 |
+
from render import render_ocr_text
|
17 |
+
|
18 |
+
from transformers import AutoModelForImageTextToText, AutoProcessor
|
19 |
+
from transformers.image_utils import load_image
|
20 |
+
|
21 |
+
model_name = "yonigozlan/GOT-OCR-2.0-hf"
|
22 |
+
|
23 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
+
|
25 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
26 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
27 |
+
model_name, low_cpu_mem_usage=True, device_map=device
|
28 |
+
)
|
29 |
+
model = model.eval().to(device)
|
30 |
+
|
31 |
+
UPLOAD_FOLDER = "./uploads"
|
32 |
+
RESULTS_FOLDER = "./results"
|
33 |
+
stop_str = "<|im_end|>"
|
34 |
+
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
|
35 |
+
if not os.path.exists(folder):
|
36 |
+
os.makedirs(folder)
|
37 |
+
|
38 |
+
input_index = 0
|
39 |
+
|
40 |
+
|
41 |
+
@spaces.GPU()
|
42 |
+
def process_image(image, task, ocr_type=None, ocr_box=None, ocr_color=None):
|
43 |
+
if image is None:
|
44 |
+
return "Error: No image provided", None, None
|
45 |
+
|
46 |
+
unique_id = str(uuid.uuid4())
|
47 |
+
image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png")
|
48 |
+
result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html")
|
49 |
+
try:
|
50 |
+
if not isinstance(image, (tuple, list)):
|
51 |
+
image = [image]
|
52 |
+
else:
|
53 |
+
image = [img[0] for img in image]
|
54 |
+
for i, img in enumerate(image):
|
55 |
+
if isinstance(img, dict):
|
56 |
+
composite_image = img.get("composite")
|
57 |
+
if composite_image is not None:
|
58 |
+
if isinstance(composite_image, np.ndarray):
|
59 |
+
cv2.imwrite(
|
60 |
+
image_path, cv2.cvtColor(composite_image, cv2.COLOR_RGB2BGR)
|
61 |
+
)
|
62 |
+
elif isinstance(composite_image, Image.Image):
|
63 |
+
composite_image.save(image_path)
|
64 |
+
else:
|
65 |
+
return (
|
66 |
+
"Error: Unsupported image format from ImageEditor",
|
67 |
+
None,
|
68 |
+
None,
|
69 |
+
)
|
70 |
+
else:
|
71 |
+
return (
|
72 |
+
"Error: No composite image found in ImageEditor output",
|
73 |
+
None,
|
74 |
+
None,
|
75 |
+
)
|
76 |
+
elif isinstance(img, np.ndarray):
|
77 |
+
cv2.imwrite(image_path, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
|
78 |
+
elif isinstance(img, str):
|
79 |
+
shutil.copy(img, image_path)
|
80 |
+
else:
|
81 |
+
return "Error: Unsupported image format", None, None
|
82 |
+
|
83 |
+
image[i] = load_image(image_path)
|
84 |
+
|
85 |
+
if task == "Plain Text OCR":
|
86 |
+
inputs = processor(image, return_tensors="pt").to("cuda")
|
87 |
+
generate_ids = model.generate(
|
88 |
+
**inputs,
|
89 |
+
do_sample=False,
|
90 |
+
tokenizer=processor.tokenizer,
|
91 |
+
stop_strings=stop_str,
|
92 |
+
max_new_tokens=4096,
|
93 |
+
)
|
94 |
+
res = processor.decode(
|
95 |
+
generate_ids[0, inputs["input_ids"].shape[1] :],
|
96 |
+
skip_special_tokens=True,
|
97 |
+
)
|
98 |
+
return res, None, unique_id
|
99 |
+
else:
|
100 |
+
if task == "Format Text OCR":
|
101 |
+
inputs = processor(image, return_tensors="pt", format=True).to("cuda")
|
102 |
+
generate_ids = model.generate(
|
103 |
+
**inputs,
|
104 |
+
do_sample=False,
|
105 |
+
tokenizer=processor.tokenizer,
|
106 |
+
stop_strings=stop_str,
|
107 |
+
max_new_tokens=4096,
|
108 |
+
)
|
109 |
+
res = processor.decode(
|
110 |
+
generate_ids[0, inputs["input_ids"].shape[1] :],
|
111 |
+
skip_special_tokens=True,
|
112 |
+
)
|
113 |
+
ocr_type = "format"
|
114 |
+
elif task == "Fine-grained OCR (Box)":
|
115 |
+
inputs = processor(image, return_tensors="pt", box=ocr_box).to("cuda")
|
116 |
+
generate_ids = model.generate(
|
117 |
+
**inputs,
|
118 |
+
do_sample=False,
|
119 |
+
tokenizer=processor.tokenizer,
|
120 |
+
stop_strings=stop_str,
|
121 |
+
max_new_tokens=4096,
|
122 |
+
)
|
123 |
+
res = processor.decode(
|
124 |
+
generate_ids[0, inputs["input_ids"].shape[1] :],
|
125 |
+
skip_special_tokens=True,
|
126 |
+
)
|
127 |
+
elif task == "Fine-grained OCR (Color)":
|
128 |
+
inputs = processor(image, return_tensors="pt", color=ocr_color).to(
|
129 |
+
"cuda"
|
130 |
+
)
|
131 |
+
generate_ids = model.generate(
|
132 |
+
**inputs,
|
133 |
+
do_sample=False,
|
134 |
+
tokenizer=processor.tokenizer,
|
135 |
+
stop_strings=stop_str,
|
136 |
+
max_new_tokens=4096,
|
137 |
+
)
|
138 |
+
res = processor.decode(
|
139 |
+
generate_ids[0, inputs["input_ids"].shape[1] :],
|
140 |
+
skip_special_tokens=True,
|
141 |
+
)
|
142 |
+
elif task == "Multi-crop OCR":
|
143 |
+
inputs = processor(
|
144 |
+
image,
|
145 |
+
return_tensors="pt",
|
146 |
+
format=True,
|
147 |
+
crop_to_patches=True,
|
148 |
+
max_patches=5,
|
149 |
+
).to("cuda")
|
150 |
+
generate_ids = model.generate(
|
151 |
+
**inputs,
|
152 |
+
do_sample=False,
|
153 |
+
tokenizer=processor.tokenizer,
|
154 |
+
stop_strings=stop_str,
|
155 |
+
max_new_tokens=4096,
|
156 |
+
)
|
157 |
+
res = processor.decode(
|
158 |
+
generate_ids[0, inputs["input_ids"].shape[1] :],
|
159 |
+
skip_special_tokens=True,
|
160 |
+
)
|
161 |
+
ocr_type = "format"
|
162 |
+
elif task == "Multi-page OCR":
|
163 |
+
inputs = processor(
|
164 |
+
image, return_tensors="pt", multi_page=True, format=True
|
165 |
+
).to("cuda")
|
166 |
+
generate_ids = model.generate(
|
167 |
+
**inputs,
|
168 |
+
do_sample=False,
|
169 |
+
tokenizer=processor.tokenizer,
|
170 |
+
stop_strings=stop_str,
|
171 |
+
max_new_tokens=4096,
|
172 |
+
)
|
173 |
+
res = processor.decode(
|
174 |
+
generate_ids[0, inputs["input_ids"].shape[1] :],
|
175 |
+
skip_special_tokens=True,
|
176 |
+
)
|
177 |
+
ocr_type = "format"
|
178 |
+
|
179 |
+
render_ocr_text(res, result_path, format_text=ocr_type == "format")
|
180 |
+
if os.path.exists(result_path):
|
181 |
+
with open(result_path, "r") as f:
|
182 |
+
html_content = f.read()
|
183 |
+
return res, html_content, unique_id
|
184 |
+
else:
|
185 |
+
return res, None, unique_id
|
186 |
+
except Exception as e:
|
187 |
+
return f"Error: {str(e)}", None, None
|
188 |
+
finally:
|
189 |
+
if os.path.exists(image_path):
|
190 |
+
os.remove(image_path)
|
191 |
+
|
192 |
+
|
193 |
+
def update_image_input(task):
|
194 |
+
if task == "Fine-grained OCR (Color)":
|
195 |
+
return (
|
196 |
+
gr.update(visible=False),
|
197 |
+
gr.update(visible=True),
|
198 |
+
gr.update(visible=True),
|
199 |
+
gr.update(visible=False),
|
200 |
+
gr.update(visible=False),
|
201 |
+
)
|
202 |
+
elif task == "Multi-page OCR":
|
203 |
+
return (
|
204 |
+
gr.update(visible=False),
|
205 |
+
gr.update(visible=False),
|
206 |
+
gr.update(visible=False),
|
207 |
+
gr.update(visible=True),
|
208 |
+
gr.update(visible=True),
|
209 |
+
)
|
210 |
+
else:
|
211 |
+
return (
|
212 |
+
gr.update(visible=True),
|
213 |
+
gr.update(visible=False),
|
214 |
+
gr.update(visible=False),
|
215 |
+
gr.update(visible=False),
|
216 |
+
gr.update(visible=False),
|
217 |
+
)
|
218 |
+
|
219 |
+
|
220 |
+
def update_inputs(task):
|
221 |
+
if task in [
|
222 |
+
"Plain Text OCR",
|
223 |
+
"Format Text OCR",
|
224 |
+
"Multi-crop OCR",
|
225 |
+
]:
|
226 |
+
return [
|
227 |
+
gr.update(visible=False),
|
228 |
+
gr.update(visible=False),
|
229 |
+
gr.update(visible=False),
|
230 |
+
gr.update(visible=True),
|
231 |
+
gr.update(visible=False),
|
232 |
+
gr.update(visible=True),
|
233 |
+
gr.update(visible=False),
|
234 |
+
gr.update(visible=False),
|
235 |
+
gr.update(visible=False),
|
236 |
+
]
|
237 |
+
elif task == "Fine-grained OCR (Box)":
|
238 |
+
return [
|
239 |
+
gr.update(visible=True, choices=["ocr", "format"]),
|
240 |
+
gr.update(visible=True),
|
241 |
+
gr.update(visible=False),
|
242 |
+
gr.update(visible=True),
|
243 |
+
gr.update(visible=False),
|
244 |
+
gr.update(visible=True),
|
245 |
+
gr.update(visible=False),
|
246 |
+
gr.update(visible=False),
|
247 |
+
gr.update(visible=False),
|
248 |
+
]
|
249 |
+
elif task == "Fine-grained OCR (Color)":
|
250 |
+
return [
|
251 |
+
gr.update(visible=True, choices=["ocr", "format"]),
|
252 |
+
gr.update(visible=False),
|
253 |
+
gr.update(visible=True, choices=["red", "green", "blue"]),
|
254 |
+
gr.update(visible=False),
|
255 |
+
gr.update(visible=True),
|
256 |
+
gr.update(visible=False),
|
257 |
+
gr.update(visible=True),
|
258 |
+
gr.update(visible=False),
|
259 |
+
gr.update(visible=False),
|
260 |
+
]
|
261 |
+
elif task == "Multi-page OCR":
|
262 |
+
return [
|
263 |
+
gr.update(visible=False),
|
264 |
+
gr.update(visible=False),
|
265 |
+
gr.update(visible=False),
|
266 |
+
gr.update(visible=False),
|
267 |
+
gr.update(visible=False),
|
268 |
+
gr.update(visible=False),
|
269 |
+
gr.update(visible=False),
|
270 |
+
gr.update(visible=True),
|
271 |
+
gr.update(visible=True),
|
272 |
+
]
|
273 |
+
|
274 |
+
|
275 |
+
def parse_latex_output(res):
|
276 |
+
# Split the input, preserving newlines and empty lines
|
277 |
+
lines = re.split(r"(\$\$.*?\$\$)", res, flags=re.DOTALL)
|
278 |
+
parsed_lines = []
|
279 |
+
in_latex = False
|
280 |
+
latex_buffer = []
|
281 |
+
|
282 |
+
for line in lines:
|
283 |
+
if line == "\n":
|
284 |
+
if in_latex:
|
285 |
+
latex_buffer.append(line)
|
286 |
+
else:
|
287 |
+
parsed_lines.append(line)
|
288 |
+
continue
|
289 |
+
|
290 |
+
line = line.strip()
|
291 |
+
|
292 |
+
latex_patterns = [r"\{", r"\}", r"\[", r"\]", r"\\", r"\$", r"_", r"^", r'"']
|
293 |
+
contains_latex = any(re.search(pattern, line) for pattern in latex_patterns)
|
294 |
+
|
295 |
+
if contains_latex:
|
296 |
+
if not in_latex:
|
297 |
+
in_latex = True
|
298 |
+
latex_buffer = ["$$"]
|
299 |
+
latex_buffer.append(line)
|
300 |
+
else:
|
301 |
+
if in_latex:
|
302 |
+
latex_buffer.append("$$")
|
303 |
+
parsed_lines.extend(latex_buffer)
|
304 |
+
in_latex = False
|
305 |
+
latex_buffer = []
|
306 |
+
parsed_lines.append(line)
|
307 |
+
|
308 |
+
if in_latex:
|
309 |
+
latex_buffer.append("$$")
|
310 |
+
parsed_lines.extend(latex_buffer)
|
311 |
+
|
312 |
+
return "$$\\$$\n".join(parsed_lines)
|
313 |
+
|
314 |
+
|
315 |
+
def ocr_demo(image, task, ocr_type, ocr_box, ocr_color):
|
316 |
+
res, html_content, unique_id = process_image(
|
317 |
+
image, task, ocr_type, ocr_box, ocr_color
|
318 |
+
)
|
319 |
+
|
320 |
+
if isinstance(res, str) and res.startswith("Error:"):
|
321 |
+
return res, None
|
322 |
+
|
323 |
+
res = res.replace("\\title", "\\title ")
|
324 |
+
formatted_res = res
|
325 |
+
# formatted_res = parse_latex_output(res)
|
326 |
+
|
327 |
+
if html_content:
|
328 |
+
encoded_html = base64.b64encode(html_content.encode("utf-8")).decode("utf-8")
|
329 |
+
iframe_src = f"data:text/html;base64,{encoded_html}"
|
330 |
+
iframe = f'<iframe src="{iframe_src}" width="100%" height="600px"></iframe>'
|
331 |
+
download_link = f'<a href="data:text/html;base64,{encoded_html}" download="result_{unique_id}.html">Download Full Result</a>'
|
332 |
+
return formatted_res, f"{download_link}<br>{iframe}"
|
333 |
+
return formatted_res, None
|
334 |
+
|
335 |
+
|
336 |
+
def cleanup_old_files():
|
337 |
+
current_time = time.time()
|
338 |
+
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
|
339 |
+
for file_path in Path(folder).glob("*"):
|
340 |
+
if current_time - file_path.stat().st_mtime > 3600: # 1 hour
|
341 |
+
file_path.unlink()
|
342 |
+
|
343 |
+
|
344 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
345 |
+
gr.Markdown(title)
|
346 |
+
gr.Markdown(description)
|
347 |
+
|
348 |
+
with gr.Row():
|
349 |
+
with gr.Column(scale=1):
|
350 |
+
with gr.Group():
|
351 |
+
image_input = gr.Image(type="filepath", label="Input Image")
|
352 |
+
gallery_input = gr.Gallery(
|
353 |
+
type="filepath", label="Input images", visible=False
|
354 |
+
)
|
355 |
+
image_editor = gr.ImageEditor(
|
356 |
+
label="Image Editor", type="pil", visible=False
|
357 |
+
)
|
358 |
+
task_dropdown = gr.Dropdown(
|
359 |
+
choices=[
|
360 |
+
"Plain Text OCR",
|
361 |
+
"Format Text OCR",
|
362 |
+
"Fine-grained OCR (Box)",
|
363 |
+
"Fine-grained OCR (Color)",
|
364 |
+
"Multi-crop OCR",
|
365 |
+
"Multi-page OCR",
|
366 |
+
],
|
367 |
+
label="Select Task",
|
368 |
+
value="Plain Text OCR",
|
369 |
+
)
|
370 |
+
ocr_type_dropdown = gr.Dropdown(
|
371 |
+
choices=["ocr", "format"], label="OCR Type", visible=False
|
372 |
+
)
|
373 |
+
ocr_box_input = gr.Textbox(
|
374 |
+
label="OCR Box (x1,y1,x2,y2)",
|
375 |
+
placeholder="[100,100,200,200]",
|
376 |
+
visible=False,
|
377 |
+
)
|
378 |
+
ocr_color_dropdown = gr.Dropdown(
|
379 |
+
choices=["red", "green", "blue"], label="OCR Color", visible=False
|
380 |
+
)
|
381 |
+
# with gr.Row():
|
382 |
+
# max_new_tokens_slider = gr.Slider(50, 500, step=10, value=150, label="Max New Tokens")
|
383 |
+
# no_repeat_ngram_size_slider = gr.Slider(1, 10, step=1, value=2, label="No Repeat N-gram Size")
|
384 |
+
|
385 |
+
submit_button = gr.Button("Process")
|
386 |
+
editor_submit_button = gr.Button("Process Edited Image", visible=False)
|
387 |
+
gallery_submit_button = gr.Button(
|
388 |
+
"Process Multiple Images", visible=False
|
389 |
+
)
|
390 |
+
|
391 |
+
with gr.Column(scale=1):
|
392 |
+
with gr.Group():
|
393 |
+
output_markdown = gr.Textbox(label="Text output")
|
394 |
+
output_html = gr.HTML(label="HTML output")
|
395 |
+
|
396 |
+
input_types = [
|
397 |
+
image_input,
|
398 |
+
image_editor,
|
399 |
+
gallery_input,
|
400 |
+
]
|
401 |
+
|
402 |
+
task_dropdown.change(
|
403 |
+
update_inputs,
|
404 |
+
inputs=[task_dropdown],
|
405 |
+
outputs=[
|
406 |
+
ocr_type_dropdown,
|
407 |
+
ocr_box_input,
|
408 |
+
ocr_color_dropdown,
|
409 |
+
image_input,
|
410 |
+
image_editor,
|
411 |
+
submit_button,
|
412 |
+
editor_submit_button,
|
413 |
+
gallery_input,
|
414 |
+
gallery_submit_button,
|
415 |
+
],
|
416 |
+
)
|
417 |
+
|
418 |
+
task_dropdown.change(
|
419 |
+
update_image_input,
|
420 |
+
inputs=[task_dropdown],
|
421 |
+
outputs=[
|
422 |
+
image_input,
|
423 |
+
image_editor,
|
424 |
+
editor_submit_button,
|
425 |
+
gallery_input,
|
426 |
+
gallery_submit_button,
|
427 |
+
],
|
428 |
+
)
|
429 |
+
|
430 |
+
submit_button.click(
|
431 |
+
ocr_demo,
|
432 |
+
inputs=[
|
433 |
+
image_input,
|
434 |
+
task_dropdown,
|
435 |
+
ocr_type_dropdown,
|
436 |
+
ocr_box_input,
|
437 |
+
ocr_color_dropdown,
|
438 |
+
],
|
439 |
+
outputs=[output_markdown, output_html],
|
440 |
+
)
|
441 |
+
editor_submit_button.click(
|
442 |
+
ocr_demo,
|
443 |
+
inputs=[
|
444 |
+
image_editor,
|
445 |
+
task_dropdown,
|
446 |
+
ocr_type_dropdown,
|
447 |
+
ocr_box_input,
|
448 |
+
ocr_color_dropdown,
|
449 |
+
],
|
450 |
+
outputs=[output_markdown, output_html],
|
451 |
+
)
|
452 |
+
gallery_submit_button.click(
|
453 |
+
ocr_demo,
|
454 |
+
inputs=[
|
455 |
+
gallery_input,
|
456 |
+
task_dropdown,
|
457 |
+
ocr_type_dropdown,
|
458 |
+
ocr_box_input,
|
459 |
+
ocr_color_dropdown,
|
460 |
+
],
|
461 |
+
outputs=[output_markdown, output_html],
|
462 |
+
)
|
463 |
+
example = gr.Examples(
|
464 |
+
examples=[
|
465 |
+
[
|
466 |
+
"./sheet_music.png",
|
467 |
+
"Format Text OCR",
|
468 |
+
"format",
|
469 |
+
None,
|
470 |
+
None,
|
471 |
+
],
|
472 |
+
[
|
473 |
+
"./latex.png",
|
474 |
+
"Format Text OCR",
|
475 |
+
"format",
|
476 |
+
None,
|
477 |
+
None,
|
478 |
+
],
|
479 |
+
],
|
480 |
+
inputs=[
|
481 |
+
image_input,
|
482 |
+
task_dropdown,
|
483 |
+
ocr_type_dropdown,
|
484 |
+
ocr_box_input,
|
485 |
+
ocr_color_dropdown,
|
486 |
+
],
|
487 |
+
outputs=[output_markdown, output_html],
|
488 |
+
)
|
489 |
+
example_finegrained = gr.Examples(
|
490 |
+
examples=[
|
491 |
+
[
|
492 |
+
"./multi_box.png",
|
493 |
+
"Fine-grained OCR (Color)",
|
494 |
+
"ocr",
|
495 |
+
None,
|
496 |
+
"red",
|
497 |
+
]
|
498 |
+
],
|
499 |
+
inputs=[
|
500 |
+
image_editor,
|
501 |
+
task_dropdown,
|
502 |
+
ocr_type_dropdown,
|
503 |
+
ocr_box_input,
|
504 |
+
ocr_color_dropdown,
|
505 |
+
],
|
506 |
+
outputs=[output_markdown, output_html],
|
507 |
+
label="Fine-grained example",
|
508 |
+
)
|
509 |
+
|
510 |
+
gr.Markdown(
|
511 |
+
"Space based on [Tonic's GOT-OCR](https://huggingface.co/spaces/Tonic/GOT-OCR)"
|
512 |
+
)
|
513 |
+
|
514 |
+
|
515 |
+
if __name__ == "__main__":
|
516 |
+
cleanup_old_files()
|
517 |
+
demo.launch()
|
globe.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
title = """# GOT-OCR 2.0: Transformers 🤗 implementation demo"""
|
2 |
+
|
3 |
+
description = """
|
4 |
+
This demo utilizes the **Transformers implementation of GOT-OCR 2.0** to extract text from images.
|
5 |
+
The GOT-OCR 2.0 model was introduced in the paper:
|
6 |
+
[**General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model**](https://arxiv.org/abs/2409.01704)
|
7 |
+
by *Haoran Wei, Chenglong Liu, Jinyue Chen, Jia Wang, Lingyu Kong, Yanming Xu, Zheng Ge, Liang Zhao, Jianjian Sun, Yuang Peng, Chunrui Han, and Xiangyu Zhang*.
|
8 |
+
|
9 |
+
### Key Features
|
10 |
+
GOT-OCR 2.0 is a **state-of-the-art OCR model** designed to handle a wide variety of tasks, including:
|
11 |
+
|
12 |
+
- **Plain Text OCR**
|
13 |
+
- **Formatted Text OCR**
|
14 |
+
- **Fine-grained OCR**
|
15 |
+
- **Multi-crop OCR**
|
16 |
+
- **Multi-page OCR**
|
17 |
+
|
18 |
+
### Beyond Text
|
19 |
+
GOT-OCR 2.0 has also been fine-tuned to work with non-textual data, such as:
|
20 |
+
|
21 |
+
- **Charts and Tables**
|
22 |
+
- **Math and Molecular Formulas**
|
23 |
+
- **Geometric Shapes**
|
24 |
+
- **Sheet Music**
|
25 |
+
|
26 |
+
Explore the capabilities of this cutting-edge model through this interactive demo!
|
27 |
+
"""
|
28 |
+
|
29 |
+
tasks = [
|
30 |
+
"Plain Text OCR",
|
31 |
+
"Format Text OCR",
|
32 |
+
"Fine-grained OCR (Box)",
|
33 |
+
"Fine-grained OCR (Color)",
|
34 |
+
"Multi-crop OCR",
|
35 |
+
"Multi-page OCR",
|
36 |
+
]
|
37 |
+
|
38 |
+
ocr_types = ["ocr", "format"]
|
39 |
+
ocr_colors = ["red", "green", "blue"]
|
latex.png
ADDED
Git LFS Details
|
multi_box.png
ADDED
Git LFS Details
|
render.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
punctuation_dict = {
|
2 |
+
",": ",",
|
3 |
+
"。": ".",
|
4 |
+
}
|
5 |
+
translation_table = str.maketrans(punctuation_dict)
|
6 |
+
stop_str = "<|im_end|>"
|
7 |
+
|
8 |
+
|
9 |
+
def svg_to_html(svg_content, output_filename):
|
10 |
+
html_content = f"""
|
11 |
+
<!DOCTYPE html>
|
12 |
+
<html lang="en">
|
13 |
+
<head>
|
14 |
+
<meta charset="UTF-8">
|
15 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
16 |
+
<title>SVG Embedded in HTML</title>
|
17 |
+
</head>
|
18 |
+
<body>
|
19 |
+
<svg width="2100" height="15000" xmlns="http://www.w3.org/2000/svg">
|
20 |
+
{svg_content}
|
21 |
+
</svg>
|
22 |
+
</body>
|
23 |
+
</html>
|
24 |
+
"""
|
25 |
+
|
26 |
+
with open(output_filename, "w") as file:
|
27 |
+
file.write(html_content)
|
28 |
+
|
29 |
+
|
30 |
+
def render_ocr_text(text, result_path, format_text=False):
|
31 |
+
if text.endswith(stop_str):
|
32 |
+
text = text[: -len(stop_str)]
|
33 |
+
text = text.strip()
|
34 |
+
|
35 |
+
if "**kern" in text:
|
36 |
+
import verovio
|
37 |
+
|
38 |
+
tk = verovio.toolkit()
|
39 |
+
tk.loadData(text)
|
40 |
+
tk.setOptions(
|
41 |
+
{
|
42 |
+
"pageWidth": 2100,
|
43 |
+
"footer": "none",
|
44 |
+
"barLineWidth": 0.5,
|
45 |
+
"beamMaxSlope": 15,
|
46 |
+
"staffLineWidth": 0.2,
|
47 |
+
"spacingStaff": 6,
|
48 |
+
}
|
49 |
+
)
|
50 |
+
tk.getPageCount()
|
51 |
+
svg = tk.renderToSVG()
|
52 |
+
svg = svg.replace('overflow="inherit"', 'overflow="visible"')
|
53 |
+
|
54 |
+
svg_to_html(svg, result_path)
|
55 |
+
|
56 |
+
if format_text and "**kern" not in text:
|
57 |
+
if "\\begin{tikzpicture}" not in text:
|
58 |
+
html_path = "./render_tools/" + "/content-mmd-to-html.html"
|
59 |
+
right_num = text.count("\\right")
|
60 |
+
left_num = text.count("\left")
|
61 |
+
|
62 |
+
if right_num != left_num:
|
63 |
+
text = (
|
64 |
+
text.replace("\left(", "(")
|
65 |
+
.replace("\\right)", ")")
|
66 |
+
.replace("\left[", "[")
|
67 |
+
.replace("\\right]", "]")
|
68 |
+
.replace("\left{", "{")
|
69 |
+
.replace("\\right}", "}")
|
70 |
+
.replace("\left|", "|")
|
71 |
+
.replace("\\right|", "|")
|
72 |
+
.replace("\left.", ".")
|
73 |
+
.replace("\\right.", ".")
|
74 |
+
)
|
75 |
+
|
76 |
+
text = text.replace('"', "``").replace("$", "")
|
77 |
+
|
78 |
+
outputs_list = text.split("\n")
|
79 |
+
gt = ""
|
80 |
+
for out in outputs_list:
|
81 |
+
gt += '"' + out.replace("\\", "\\\\") + r"\n" + '"' + "+" + "\n"
|
82 |
+
|
83 |
+
gt = gt[:-2]
|
84 |
+
|
85 |
+
with open(html_path, "r") as web_f:
|
86 |
+
lines = web_f.read()
|
87 |
+
lines = lines.split("const text =")
|
88 |
+
new_web = lines[0] + "const text =" + gt + lines[1]
|
89 |
+
else:
|
90 |
+
html_path = "./render_tools/" + "/tikz.html"
|
91 |
+
text = text.translate(translation_table)
|
92 |
+
outputs_list = text.split("\n")
|
93 |
+
gt = ""
|
94 |
+
for out in outputs_list:
|
95 |
+
if out:
|
96 |
+
if (
|
97 |
+
"\\begin{tikzpicture}" not in out
|
98 |
+
and "\\end{tikzpicture}" not in out
|
99 |
+
):
|
100 |
+
while out[-1] == " ":
|
101 |
+
out = out[:-1]
|
102 |
+
if out is None:
|
103 |
+
break
|
104 |
+
|
105 |
+
if out:
|
106 |
+
if out[-1] != ";":
|
107 |
+
gt += out[:-1] + ";\n"
|
108 |
+
else:
|
109 |
+
gt += out + "\n"
|
110 |
+
else:
|
111 |
+
gt += out + "\n"
|
112 |
+
|
113 |
+
with open(html_path, "r") as web_f:
|
114 |
+
lines = web_f.read()
|
115 |
+
lines = lines.split("const text =")
|
116 |
+
new_web = lines[0] + gt + lines[1]
|
117 |
+
|
118 |
+
with open(result_path, "w") as web_f_new:
|
119 |
+
web_f_new.write(new_web)
|
render_tools/content-mmd-to-html.html
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en" data-lt-installed="true"><head>
|
3 |
+
<meta charset="UTF-8">
|
4 |
+
<title>Title</title>
|
5 |
+
<script>
|
6 |
+
const text =
|
7 |
+
</script>
|
8 |
+
<style>
|
9 |
+
#content {
|
10 |
+
max-width: 800px;
|
11 |
+
margin: auto;
|
12 |
+
}
|
13 |
+
</style>
|
14 |
+
<script>
|
15 |
+
let script = document.createElement('script');
|
16 |
+
script.src = "https://cdn.jsdelivr.net/npm/[email protected]/es5/bundle.js";
|
17 |
+
document.head.append(script);
|
18 |
+
|
19 |
+
script.onload = function() {
|
20 |
+
const isLoaded = window.loadMathJax();
|
21 |
+
if (isLoaded) {
|
22 |
+
console.log('Styles loaded!')
|
23 |
+
}
|
24 |
+
|
25 |
+
const el = window.document.getElementById('content-text');
|
26 |
+
if (el) {
|
27 |
+
const options = {
|
28 |
+
htmlTags: true
|
29 |
+
};
|
30 |
+
const html = window.render(text, options);
|
31 |
+
el.outerHTML = html;
|
32 |
+
}
|
33 |
+
};
|
34 |
+
</script>
|
35 |
+
</head>
|
36 |
+
<body>
|
37 |
+
<div id="content"><div id="content-text"></div></div>
|
38 |
+
</body>
|
39 |
+
</html>
|
render_tools/tikz.html
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
|
3 |
+
<html>
|
4 |
+
|
5 |
+
<head>
|
6 |
+
<meta charset="UTF-8">
|
7 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
8 |
+
<title>Document</title>
|
9 |
+
<link rel="stylesheet" type="text/css" href="https://tikzjax.com/v1/fonts.css">
|
10 |
+
<script src="https://tikzjax.com/v1/tikzjax.js"></script>
|
11 |
+
</head>
|
12 |
+
<body>
|
13 |
+
<script type="text/tikz">
|
14 |
+
const text =
|
15 |
+
</script>
|
16 |
+
</body>
|
17 |
+
</html>
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.5.1
|
2 |
+
torchvision==0.20.1
|
3 |
+
git+https://github.com/yonigozlan/transformers.git@add-got-ocr2
|
4 |
+
verovio
|
5 |
+
opencv-python
|
6 |
+
numpy==1.26.3
|
7 |
+
pillow
|
sheet_music.png
ADDED
Git LFS Details
|