Scorpius_HF / server /server.py
yjwtheonly
server
6ebf426
raw
history blame
27.3 kB
#%%
import gradio as gr
import time
import sys
import os
import torch
import torch.backends.cudnn as cudnn
import numpy as np
import json
import networkx as nx
import spacy
import pickle as pkl
#%%
from torch.nn.modules.loss import CrossEntropyLoss
from transformers import AutoTokenizer
from transformers import BioGptForCausalLM, BartForConditionalGeneration
import server_utils
sys.path.append("..")
import Parameters
from Openai.chat import generate_abstract
sys.path.append("../DiseaseSpecific")
import utils, attack
from attack import calculate_edge_bound, get_model_loss_without_softmax
specific_model = None
def capitalize_the_first_letter(s):
return s[0].upper() + s[1:]
parser = utils.get_argument_parser()
parser = utils.add_attack_parameters(parser)
parser.add_argument('--init-mode', type = str, default='single', help = 'How to select target nodes') # 'single' for case study
args = parser.parse_args()
args = utils.set_hyperparams(args)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = torch.device("cpu")
args.device = device
args.device1 = device
if torch.cuda.device_count() >= 2:
args.device = "cuda:0"
args.device1 = "cuda:1"
utils.seed_all(args.seed)
np.set_printoptions(precision=5)
cudnn.benchmark = False
model_name = '{0}_{1}_{2}_{3}_{4}'.format(args.model, args.embedding_dim, args.input_drop, args.hidden_drop, args.feat_drop)
model_path = '../DiseaseSpecific/saved_models/{0}_{1}.model'.format(args.data, model_name)
data_path = os.path.join('../DiseaseSpecific/processed_data', args.data)
data = utils.load_data(os.path.join(data_path, 'all.txt'))
n_ent, n_rel, ent_to_id, rel_to_id = utils.generate_dicts(data_path)
with open(os.path.join(data_path, 'filter.pickle'), 'rb') as fl:
filters = pkl.load(fl)
with open(os.path.join(data_path, 'entityid_to_nodetype.json'), 'r') as fl:
entityid_to_nodetype = json.load(fl)
with open(os.path.join(data_path, 'edge_nghbrs.pickle'), 'rb') as fl:
edge_nghbrs = pkl.load(fl)
with open(os.path.join(data_path, 'disease_meshid.pickle'), 'rb') as fl:
disease_meshid = pkl.load(fl)
with open(os.path.join(data_path, 'entities_dict.json'), 'r') as fl:
entity_to_id = json.load(fl)
with open(Parameters.GNBRfile+'entity_raw_name', 'rb') as fl:
entity_raw_name = pkl.load(fl)
with open(os.path.join(data_path, 'entities_reverse_dict.json'), 'r') as fl:
id_to_entity = json.load(fl)
id_to_meshid = id_to_entity.copy()
with open(Parameters.GNBRfile+'retieve_sentence_through_edgetype', 'rb') as fl:
retieve_sentence_through_edgetype = pkl.load(fl)
with open(Parameters.GNBRfile+'raw_text_of_each_sentence', 'rb') as fl:
raw_text_sen = pkl.load(fl)
with open(Parameters.UMLSfile+'drug_term', 'rb') as fl:
drug_term = pkl.load(fl)
drug_dict = {}
disease_dict = {}
for k, v in entity_raw_name.items():
#chemical_mesh:c050048
tp = k.split('_')[0]
v = capitalize_the_first_letter(v)
if len(v) <= 2:
continue
if tp == 'chemical':
drug_dict[v] = k
elif tp == 'disease':
disease_dict[v] = k
drug_list = list(drug_dict.keys())
disease_list = list(disease_dict.keys())
drug_list.sort()
disease_list.sort()
init_mask = np.asarray([0] * n_ent).astype('int64')
init_mask = (init_mask == 1)
for k, v in filters.items():
for kk, vv in v.items():
tmp = init_mask.copy()
tmp[np.asarray(vv)] = True
t = torch.ByteTensor(tmp).to(args.device)
filters[k][kk] = t
gpt_tokenizer = AutoTokenizer.from_pretrained('microsoft/biogpt')
gpt_tokenizer.pad_token = gpt_tokenizer.eos_token
gpt_model = BioGptForCausalLM.from_pretrained('microsoft/biogpt', pad_token_id=gpt_tokenizer.eos_token_id)
gpt_model.eval()
specific_model = utils.load_model(model_path, args, n_ent, n_rel, args.device)
specific_model.eval()
divide_bound, data_mean, data_std = attack.calculate_edge_bound(data, specific_model, args.device, n_ent)
nlp = spacy.load("en_core_web_sm")
bart_model = BartForConditionalGeneration.from_pretrained('GanjinZero/biobart-large')
bart_model.eval()
bart_tokenizer = AutoTokenizer.from_pretrained('GanjinZero/biobart-large')
def tune_chatgpt(draft, attack_data, dpath):
dpath_i = 0
bart_model.to(args.device1)
for i, v in enumerate(draft):
input = v['in'].replace('\n', '')
output = v['out'].replace('\n', '')
s, r, o = attack_data[i]
path_text = dpath[dpath_i].replace('\n', '')
dpath_i += 1
text_s = entity_raw_name[id_to_meshid[s]]
text_o = entity_raw_name[id_to_meshid[o]]
doc = nlp(output)
words= input.split(' ')
tokenized_sens = [sen for sen in doc.sents]
sens = np.array([sen.text for sen in doc.sents])
checkset = set([text_s, text_o])
e_entity = set(['start_entity', 'end_entity'])
for path in path_text.split(' '):
a, b, c = path.split('|')
if a not in e_entity:
checkset.add(a)
if c not in e_entity:
checkset.add(c)
vec = []
l = 0
while(l < len(words)):
bo =False
for j in range(len(words), l, -1): # reversing is important !!!
cc = ' '.join(words[l:j])
if (cc in checkset):
vec += [True] * (j-l)
l = j
bo = True
break
if not bo:
vec.append(False)
l += 1
vec, span = server_utils.find_mini_span(vec, words, checkset)
# vec = np.vectorize(lambda x: x in checkset)(words)
vec[-1] = True
prompt = []
mask_num = 0
for j, bo in enumerate(vec):
if not bo:
mask_num += 1
else:
if mask_num > 0:
# mask_num = mask_num // 3 # span length ~ poisson distribution (lambda = 3)
mask_num = max(mask_num, 1)
mask_num= min(8, mask_num)
prompt += ['<mask>'] * mask_num
prompt.append(words[j])
mask_num = 0
prompt = ' '.join(prompt)
Text = []
Assist = []
for j in range(len(sens)):
Bart_input = list(sens[:j]) + [prompt] +list(sens[j+1:])
assist = list(sens[:j]) + [input] +list(sens[j+1:])
Text.append(' '.join(Bart_input))
Assist.append(' '.join(assist))
for j in range(len(sens)):
Bart_input = server_utils.mask_func(tokenized_sens[:j]) + [input] + server_utils.mask_func(tokenized_sens[j+1:])
assist = list(sens[:j]) + [input] +list(sens[j+1:])
Text.append(' '.join(Bart_input))
Assist.append(' '.join(assist))
batch_size = 8
Outs = []
for l in range(0, len(Text), batch_size):
R = min(len(Text), l + batch_size)
A = bart_tokenizer(Text[l:R],
truncation = True,
padding = True,
max_length = 1024,
return_tensors="pt")
input_ids = A['input_ids'].to(args.device1)
attention_mask = A['attention_mask'].to(args.device1)
aaid = bart_model.generate(input_ids, attention_mask = attention_mask, num_beams = 5, max_length = 1024)
outs = bart_tokenizer.batch_decode(aaid, skip_special_tokens=True, clean_up_tokenization_spaces=False)
Outs += outs
bart_model.to('cpu')
return span, prompt, Outs, Text, Assist
def score_and_select(s, r, o, span , prompt , sen_list, BART_in, Assist, dpath, v):
criterion = CrossEntropyLoss(reduction="none")
text_s = entity_raw_name[id_to_meshid[s]]
text_o = entity_raw_name[id_to_meshid[o]]
sen_list = [server_utils.process(text) for text in sen_list]
path_text = dpath[0].replace('\n', '')
checkset = set([text_s, text_o])
e_entity = set(['start_entity', 'end_entity'])
for path in path_text.split(' '):
a, b, c = path.split('|')
if a not in e_entity:
checkset.add(a)
if c not in e_entity:
checkset.add(c)
input = v['in'].replace('\n', '')
output = v['out'].replace('\n', '')
doc = nlp(output)
gpt_sens = [sen.text for sen in doc.sents]
assert len(gpt_sens) == len(sen_list) // 2
word_sets = []
for sen in gpt_sens:
word_sets.append(set(sen.split(' ')))
def sen_align(word_sets, modified_word_sets):
l = 0
while(l < len(modified_word_sets)):
if len(word_sets[l].intersection(modified_word_sets[l])) > len(word_sets[l]) * 0.8:
l += 1
else:
break
if l == len(modified_word_sets):
return -1, -1, -1, -1
r = l + 1
r1 = None
r2 = None
for pos1 in range(r, len(word_sets)):
for pos2 in range(r, len(modified_word_sets)):
if len(word_sets[pos1].intersection(modified_word_sets[pos2])) > len(word_sets[pos1]) * 0.8:
r1 = pos1
r2 = pos2
break
if r1 is not None:
break
if r1 is None:
r1 = len(word_sets)
r2 = len(modified_word_sets)
return l, r1, l, r2
replace_sen_list = []
boundary = []
assert len(sen_list) % 2 == 0
for j in range(len(sen_list) // 2):
doc = nlp(sen_list[j])
sens = [sen.text for sen in doc.sents]
modified_word_sets = [set(sen.split(' ')) for sen in sens]
l1, r1, l2, r2 = sen_align(word_sets, modified_word_sets)
boundary.append((l1, r1, l2, r2))
if l1 == -1:
replace_sen_list.append(sen_list[j])
continue
check_text = ' '.join(sens[l2: r2])
replace_sen_list.append(' '.join(gpt_sens[:l1] + [check_text] + gpt_sens[r1:]))
sen_list = replace_sen_list + sen_list[len(sen_list) // 2:]
gpt_model.to(args.device1)
sen_list.append(output)
tokens = gpt_tokenizer( sen_list,
truncation = True,
padding = True,
max_length = 1024,
return_tensors="pt")
target_ids = tokens['input_ids'].to(args.device1)
attention_mask = tokens['attention_mask'].to(args.device1)
L = len(sen_list)
ret_log_L = []
for l in range(0, L, 5):
R = min(L, l + 5)
target = target_ids[l:R, :]
attention = attention_mask[l:R, :]
outputs = gpt_model(input_ids = target,
attention_mask = attention,
labels = target)
logits = outputs.logits
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = target[..., 1:].contiguous()
Loss = criterion(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1))
Loss = Loss.view(-1, shift_logits.shape[1])
attention = attention[..., 1:].contiguous()
log_Loss = (torch.mean(Loss * attention.float(), dim = 1) / torch.mean(attention.float(), dim = 1))
ret_log_L.append(log_Loss.detach())
log_Loss = torch.cat(ret_log_L, -1).cpu().numpy()
gpt_model.to('cpu')
p = np.argmin(log_Loss)
return sen_list[p]
def generate_template_for_triplet(attack_data):
criterion = CrossEntropyLoss(reduction="none")
gpt_model.to(args.device1)
print('Generating template ...')
GPT_batch_size = 8
single_sentence = []
test_text = []
test_dp = []
test_parse = []
s, r, o = attack_data[0]
dependency_sen_dict = retieve_sentence_through_edgetype[int(r)]['manual']
candidate_sen = []
Dp_path = []
L = len(dependency_sen_dict.keys())
bound = 500 // L
if bound == 0:
bound = 1
for dp_path, sen_list in dependency_sen_dict.items():
if len(sen_list) > bound:
index = np.random.choice(np.array(range(len(sen_list))), bound, replace=False)
sen_list = [sen_list[aa] for aa in index]
ssen_list = []
for aa in range(len(sen_list)):
paper_id, sen_id = sen_list[aa]
if raw_text_sen[paper_id][sen_id]['start_formatted'] == raw_text_sen[paper_id][sen_id]['end_formatted']:
continue
ssen_list.append(sen_list[aa])
sen_list = ssen_list
candidate_sen += sen_list
Dp_path += [dp_path] * len(sen_list)
text_s = entity_raw_name[id_to_meshid[s]]
text_o = entity_raw_name[id_to_meshid[o]]
candidate_text_sen = []
candidate_ori_sen = []
candidate_parse_sen = []
for paper_id, sen_id in candidate_sen:
sen = raw_text_sen[paper_id][sen_id]
text = sen['text']
candidate_ori_sen.append(text)
ss = sen['start_formatted']
oo = sen['end_formatted']
text = text.replace('-LRB-', '(')
text = text.replace('-RRB-', ')')
text = text.replace('-LSB-', '[')
text = text.replace('-RSB-', ']')
text = text.replace('-LCB-', '{')
text = text.replace('-RCB-', '}')
parse_text = text
parse_text = parse_text.replace(ss, text_s.replace(' ', '_'))
parse_text = parse_text.replace(oo, text_o.replace(' ', '_'))
text = text.replace(ss, text_s)
text = text.replace(oo, text_o)
text = text.replace('_', ' ')
candidate_text_sen.append(text)
candidate_parse_sen.append(parse_text)
tokens = gpt_tokenizer( candidate_text_sen,
truncation = True,
padding = True,
max_length = 300,
return_tensors="pt")
target_ids = tokens['input_ids'].to(args.device1)
attention_mask = tokens['attention_mask'].to(args.device1)
L = len(candidate_text_sen)
assert L > 0
ret_log_L = []
for l in range(0, L, GPT_batch_size):
R = min(L, l + GPT_batch_size)
target = target_ids[l:R, :]
attention = attention_mask[l:R, :]
outputs = gpt_model(input_ids = target,
attention_mask = attention,
labels = target)
logits = outputs.logits
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = target[..., 1:].contiguous()
Loss = criterion(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1))
Loss = Loss.view(-1, shift_logits.shape[1])
attention = attention[..., 1:].contiguous()
log_Loss = (torch.mean(Loss * attention.float(), dim = 1) / torch.mean(attention.float(), dim = 1))
ret_log_L.append(log_Loss.detach())
ret_log_L = list(torch.cat(ret_log_L, -1).cpu().numpy())
sen_score = list(zip(candidate_text_sen, ret_log_L, candidate_ori_sen, Dp_path, candidate_parse_sen))
sen_score.sort(key = lambda x: x[1])
test_text.append(sen_score[0][2])
test_dp.append(sen_score[0][3])
test_parse.append(sen_score[0][4])
single_sentence.append(sen_score[0][0])
gpt_model.to('cpu')
return single_sentence, test_text, test_dp, test_parse
meshids = list(id_to_meshid.values())
cal = {
'chemical' : 0,
'disease' : 0,
'gene' : 0
}
for meshid in meshids:
cal[meshid.split('_')[0]] += 1
def check_reasonable(s, r, o):
train_trip = np.asarray([[s, r, o]])
train_trip = torch.from_numpy(train_trip.astype('int64')).to(device)
edge_loss = get_model_loss_without_softmax(train_trip, specific_model, device).squeeze()
# edge_losse_log_prob = torch.log(F.softmax(-edge_loss, dim = -1))
edge_loss = edge_loss.item()
edge_loss = (edge_loss - data_mean) / data_std
edge_losses_prob = 1 / ( 1 + np.exp(edge_loss - divide_bound) )
bound = 1 - args.reasonable_rate
return (edge_losses_prob > bound), edge_losses_prob
edgeid_to_edgetype = {}
edgeid_to_reversemask = {}
for k, id_list in Parameters.edge_type_to_id.items():
for iid, mask in zip(id_list, Parameters.reverse_mask[k]):
edgeid_to_edgetype[str(iid)] = k
edgeid_to_reversemask[str(iid)] = mask
reverse_tot = 0
G = nx.DiGraph()
for s, r, o in data:
assert id_to_meshid[s].split('_')[0] == edgeid_to_edgetype[r].split('-')[0]
if edgeid_to_reversemask[r] == 1:
reverse_tot += 1
G.add_edge(int(o), int(s))
else:
G.add_edge(int(s), int(o))
print('Page ranking ...')
pagerank_value_1 = nx.pagerank(G, max_iter = 200, tol=1.0e-7)
drug_meshid = []
drug_list = []
for meshid, nm in entity_raw_name.items():
if nm.lower() in drug_term and meshid.split('_')[0] == 'chemical':
drug_meshid.append(meshid)
drug_list.append(capitalize_the_first_letter(nm))
drug_list = list(set(drug_list))
drug_list.sort()
drug_meshid = set(drug_meshid)
pr = list(pagerank_value_1.items())
pr.sort(key = lambda x: x[1])
sorted_rank = { 'chemical' : [],
'gene' : [],
'disease': [],
'merged' : []}
for iid, score in pr:
tp = id_to_meshid[str(iid)].split('_')[0]
if tp == 'chemical':
if id_to_meshid[str(iid)] in drug_meshid:
sorted_rank[tp].append((iid, score))
else:
sorted_rank[tp].append((iid, score))
sorted_rank['merged'].append((iid, score))
llen = len(sorted_rank['merged'])
sorted_rank['merged'] = sorted_rank['merged'][llen * 3 // 4 : ]
def generate_specific_attack_edge(start_entity, end_entity):
global specific_model
specific_model.to(device)
strat_meshid = drug_dict[start_entity]
end_meshid = disease_dict[end_entity]
start_entity = entity_to_id[strat_meshid]
end_entity = entity_to_id[end_meshid]
target_data = np.array([[start_entity, '10', end_entity]])
neighbors = attack.generate_nghbrs(target_data, edge_nghbrs, args)
ret = f'Generating malicious link for {strat_meshid}_treatment_{end_meshid}', 'Generation malicious text ...'
param_optimizer = list(specific_model.named_parameters())
param_influence = []
for n,p in param_optimizer:
param_influence.append(p)
len_list = []
for v in neighbors.values():
len_list.append(len(v))
mean_len = np.mean(len_list)
attack_trip, score_record = attack.addition_attack(param_influence, args.device, n_rel, data, target_data, neighbors, specific_model, filters, entityid_to_nodetype, args.attack_batch_size, args, load_Record = args.load_existed, divide_bound = divide_bound, data_mean = data_mean, data_std = data_std, cache_intermidiate = False)
s, r, o = attack_trip[0]
specific_model.to('cpu')
return s, r, o
def generate_agnostic_attack_edge(targets):
specific_model.to(device)
attack_edge_list = []
for target in targets:
candidate_list = []
score_list = []
loss_list = []
main_dict = {}
for iid, score in sorted_rank['merged']:
a = G.number_of_edges(iid, target) + 1
if a != 1:
continue
b = G.out_degree(iid) + 1
tp = id_to_meshid[str(iid)].split('_')[0]
edge_losses = []
r_list = []
for r in range(len(edgeid_to_edgetype)):
r_tp = edgeid_to_edgetype[str(r)]
if (edgeid_to_reversemask[str(r)] == 0 and r_tp.split('-')[0] == tp and r_tp.split('-')[1] == 'chemical'):
train_trip = np.array([[iid, r, target]])
train_trip = torch.from_numpy(train_trip.astype('int64')).to(device)
edge_loss = get_model_loss_without_softmax(train_trip, specific_model, device).squeeze()
edge_losses.append(edge_loss.unsqueeze(0).detach())
r_list.append(r)
elif(edgeid_to_reversemask[str(r)] == 1 and r_tp.split('-')[0] == 'chemical' and r_tp.split('-')[1] == tp):
train_trip = np.array([[iid, r, target]]) # add batch dim
train_trip = torch.from_numpy(train_trip.astype('int64')).to(device)
edge_loss = get_model_loss_without_softmax(train_trip, specific_model, device).squeeze()
edge_losses.append(edge_loss.unsqueeze(0).detach())
r_list.append(r)
if len(edge_losses)==0:
continue
min_index = torch.argmin(torch.cat(edge_losses, dim = 0))
r = r_list[min_index]
r_tp = edgeid_to_edgetype[str(r)]
old_len = len(candidate_list)
if (edgeid_to_reversemask[str(r)] == 0):
bo, prob = check_reasonable(iid, r, target)
if bo:
candidate_list.append((iid, r, target))
score_list.append(score * a / b)
loss_list.append(edge_losses[min_index].item())
if (edgeid_to_reversemask[str(r)] == 1):
bo, prob = check_reasonable(target, r, iid)
if bo:
candidate_list.append((target, r, iid))
score_list.append(score * a / b)
loss_list.append(edge_losses[min_index].item())
if len(candidate_list) == 0:
if args.added_edge_num == '' or int(args.added_edge_num) == 1:
attack_edge_list.append((-1,-1,-1))
else:
attack_edge_list.append([])
continue
norm_score = np.array(score_list) / np.sum(score_list)
norm_loss = np.exp(-np.array(loss_list)) / np.sum(np.exp(-np.array(loss_list)))
total_score = norm_score * norm_loss
total_score_index = list(zip(range(len(total_score)), total_score))
total_score_index.sort(key = lambda x: x[1], reverse = True)
total_index = np.argsort(total_score)[::-1]
assert total_index[0] == total_score_index[0][0]
# find rank of main index
max_index = np.argmax(total_score)
assert max_index == total_score_index[0][0]
tmp_add = []
add_num = 1
if args.added_edge_num == '' or int(args.added_edge_num) == 1:
attack_edge_list.append(candidate_list[max_index])
else:
add_num = int(args.added_edge_num)
for i in range(add_num):
tmp_add.append(candidate_list[total_score_index[i][0]])
attack_edge_list.append(tmp_add)
specific_model.to('cpu')
return attack_edge_list[0]
def specific_func(start_entity, end_entity):
args.reasonable_rate = 0.5
s, r, o = generate_specific_attack_edge(start_entity, end_entity)
if int(s) == -1:
return 'All candidate links are filterd out by defender, so no malicious link can be generated', 'No malicious abstract can be generated'
s_name = entity_raw_name[id_to_entity[str(s)]]
r_name = Parameters.edge_id_to_type[int(r)].split(':')[1]
o_name = entity_raw_name[id_to_entity[str(o)]]
attack_data = np.array([[s, r, o]])
path_list = []
with open(f'../DiseaseSpecific/generate_abstract/path/random_{args.reasonable_rate}_path.json', 'r') as fl:
for line in fl.readlines():
line.replace('\n', '')
path_list.append(line)
with open(f'../DiseaseSpecific/generate_abstract/random_{args.reasonable_rate}_sentence.json', 'r') as fl:
sentence_dict = json.load(fl)
dpath = []
for k, v in sentence_dict.items():
if f'{s}_{r}_{o}' in k:
single_sentence = [v]
dpath = [path_list[int(k.split('_')[-1])]]
break
if len(dpath) == 0:
single_sentence, _, dpath, _ = generate_template_for_triplet(attack_data)
elif not(s_name in single_sentence[0] and o_name in single_sentence[0]):
single_sentence, _, dpath, _ = generate_template_for_triplet(attack_data)
print('Using ChatGPT for generation...')
draft = generate_abstract(single_sentence[0])
print('Using BioBART for tuning...')
span , prompt , sen_list, BART_in, Assist = tune_chatgpt([{'in':single_sentence[0], 'out': draft}], attack_data, dpath)
text = score_and_select(s, r, o, span , prompt , sen_list, BART_in, Assist, dpath, {'in':single_sentence[0], 'out': draft})
return f'{capitalize_the_first_letter(s_name)} - {capitalize_the_first_letter(r_name)} - {capitalize_the_first_letter(o_name)}', server_utils.process(text)
# f'The sentence is: {single_sentence[0]}\n The path is: {dpath[0]}'
def agnostic_func(agnostic_entity):
args.reasonable_rate = 0.7
target_id = entity_to_id[drug_dict[agnostic_entity]]
s = generate_agnostic_attack_edge([int(target_id)])
if len(s) == 0:
return 'All candidate links are filterd out by defender, so no malicious link can be generated', 'No malicious abstract can be generated'
if int(s[0]) == -1:
return 'All candidate links are filterd out by defender, so no malicious link can be generated', 'No malicious abstract can be generated'
s, r, o = str(s[0]), str(s[1]), str(s[2])
s_name = entity_raw_name[id_to_entity[str(s)]]
r_name = Parameters.edge_id_to_type[int(r)].split(':')[1]
o_name = entity_raw_name[id_to_entity[str(o)]]
attack_data = np.array([[s, r, o]])
single_sentence, _, dpath, _ = generate_template_for_triplet(attack_data)
print('Using ChatGPT for generation...')
draft = generate_abstract(single_sentence[0])
print('Using BioBART for tuning...')
span , prompt , sen_list, BART_in, Assist = tune_chatgpt([{'in':single_sentence[0], 'out': draft}], attack_data, dpath)
text = score_and_select(s, r, o, span , prompt , sen_list, BART_in, Assist, dpath, {'in':single_sentence[0], 'out': draft})
return f'{capitalize_the_first_letter(s_name)} - {capitalize_the_first_letter(r_name)} - {capitalize_the_first_letter(o_name)}', server_utils.process(text)
#%%
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("Poison scitific knowledge with Scorpius")
# with gr.Column():
with gr.Row():
# Center
with gr.Column():
gr.Markdown("Select your poison target")
with gr.Tab('Target specific'):
with gr.Column():
with gr.Row():
start_entity = gr.Dropdown(drug_list, label="Promoting drug")
end_entity = gr.Dropdown(disease_list, label="Target disease")
specific_generation_button = gr.Button('Poison!')
with gr.Tab('Target agnostic'):
agnostic_entity = gr.Dropdown(drug_list, label="Promoting drug")
agnostic_generation_button = gr.Button('Poison!')
with gr.Column():
gr.Markdown("Malicious link")
malicisous_link = gr.Textbox(lines=1, label="Malicious link")
gr.Markdown("Malicious text")
malicious_text = gr.Textbox(label="Malicious text", lines=5)
specific_generation_button.click(specific_func, inputs=[start_entity, end_entity], outputs=[malicisous_link, malicious_text])
agnostic_generation_button.click(agnostic_func, inputs=[agnostic_entity], outputs=[malicisous_link, malicious_text])
demo.launch(server_name="0.0.0.0", server_port=8000, debug=False)