Spaces:
Running
Running
#%% | |
import gradio as gr | |
import time | |
import sys | |
import os | |
import torch | |
import torch.backends.cudnn as cudnn | |
import numpy as np | |
import json | |
import networkx as nx | |
import spacy | |
# os.system("python -m spacy download en-core-web-sm") | |
import pickle as pkl | |
from tqdm import tqdm | |
import traceback | |
#%% | |
# please use torch.load with map_location=torch.device('cpu') to map your storages to the CPU. | |
# torch.loa | |
from torch.nn.modules.loss import CrossEntropyLoss | |
from transformers import AutoTokenizer | |
from transformers import BioGptForCausalLM, BartForConditionalGeneration | |
from server import server_utils | |
import Parameters | |
from Openai.chat import generate_abstract | |
from DiseaseSpecific import utils, attack | |
from DiseaseSpecific.attack import calculate_edge_bound, get_model_loss_without_softmax | |
specific_model = None | |
def capitalize_the_first_letter(s): | |
return s[0].upper() + s[1:] | |
parser = utils.get_argument_parser() | |
parser = utils.add_attack_parameters(parser) | |
parser.add_argument('--init-mode', type = str, default='single', help = 'How to select target nodes') # 'single' for case study | |
args = parser.parse_args() | |
args = utils.set_hyperparams(args) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# device = torch.device("cpu") | |
args.device = device | |
args.device1 = device | |
if torch.cuda.device_count() >= 2: | |
args.device = "cuda:0" | |
args.device1 = "cuda:1" | |
utils.seed_all(args.seed) | |
np.set_printoptions(precision=5) | |
cudnn.benchmark = False | |
model_name = '{0}_{1}_{2}_{3}_{4}'.format(args.model, args.embedding_dim, args.input_drop, args.hidden_drop, args.feat_drop) | |
model_path = 'DiseaseSpecific/saved_models/{0}_{1}.model'.format(args.data, model_name) | |
data_path = os.path.join('DiseaseSpecific/processed_data', args.data) | |
data = utils.load_data(os.path.join(data_path, 'all.txt')) | |
print('done') | |
n_ent, n_rel, ent_to_id, rel_to_id = utils.generate_dicts(data_path) | |
with open(os.path.join(data_path, 'filter.pickle'), 'rb') as fl: | |
filters = pkl.load(fl) | |
with open(os.path.join(data_path, 'entityid_to_nodetype.json'), 'r') as fl: | |
entityid_to_nodetype = json.load(fl) | |
with open(os.path.join(data_path, 'edge_nghbrs.pickle'), 'rb') as fl: | |
edge_nghbrs = pkl.load(fl) | |
with open(os.path.join(data_path, 'disease_meshid.pickle'), 'rb') as fl: | |
disease_meshid = pkl.load(fl) | |
with open(os.path.join(data_path, 'entities_dict.json'), 'r') as fl: | |
entity_to_id = json.load(fl) | |
with open(Parameters.GNBRfile+'entity_raw_name', 'rb') as fl: | |
entity_raw_name = pkl.load(fl) | |
with open(os.path.join(data_path, 'entities_reverse_dict.json'), 'r') as fl: | |
id_to_entity = json.load(fl) | |
id_to_meshid = id_to_entity.copy() | |
with open(Parameters.GNBRfile+'retieve_sentence_through_edgetype', 'rb') as fl: | |
retieve_sentence_through_edgetype = pkl.load(fl) | |
with open(Parameters.GNBRfile+'raw_text_of_each_sentence', 'rb') as fl: | |
raw_text_sen = pkl.load(fl) | |
with open(Parameters.UMLSfile+'drug_term', 'rb') as fl: | |
drug_term = pkl.load(fl) | |
print('done') | |
gallery_specific_target_path = os.path.join(data_path, 'DD_target_distmult_GNBR_random_50_exists:False_single.txt') | |
gallery_specific_link_path = 'DiseaseSpecific/attack_results/GNBR/cos_distmult_random_50_exists:False_20_quadratic_single_0.5.txt' | |
gallery_specific_text_path = 'DiseaseSpecific/generate_abstract/random_0.5_bioBART_finetune.json' | |
gallery_agnostic_target_path = 'DiseaseAgnostic/processed_data/target_0.7random.pkl' | |
gallery_agnostic_link_path = 'DiseaseAgnostic/processed_data/attack_edge_distmult_0.7random.pkl' | |
gallery_agnostic_text_path = 'DiseaseAgnostic/generate_abstract/random0.7_bioBART_finetune.json' | |
gallery_specific_chat_path = 'DiseaseSpecific/generate_abstract/random_0.5_chat.json' | |
gallery_agnostic_chat_path = 'DiseaseAgnostic/generate_abstract/random0.7_chat.json' | |
gallery_specific_target = utils.load_data(gallery_specific_target_path, drop=False) | |
gallery_specific_link = utils.load_data(gallery_specific_link_path, drop=False) | |
with open(gallery_specific_text_path, 'r') as fl: | |
gallery_specific_text = json.load(fl) | |
with open(gallery_agnostic_target_path, 'rb') as fl: | |
gallery_agnostic_target = pkl.load(fl) | |
with open(gallery_agnostic_link_path, 'rb') as fl: | |
gallery_agnostic_link = pkl.load(fl) | |
with open(gallery_agnostic_text_path, 'r') as fl: | |
gallery_agnostic_text = json.load(fl) | |
with open(gallery_specific_chat_path, 'r') as fl: | |
gallery_specific_chat = json.load(fl) | |
with open(gallery_agnostic_chat_path, 'r') as fl: | |
gallery_agnostic_chat = json.load(fl) | |
gallery_specific_list = [] | |
gallery_specific_target_dict = {} | |
for i, (s, r, o) in enumerate(gallery_specific_target): | |
s = id_to_meshid[str(s)] | |
o = id_to_meshid[str(o)] | |
k = f'{gallery_specific_link[i][0]}_{gallery_specific_link[i][1]}_{gallery_specific_link[i][2]}_{i}' | |
if 'sorry' in gallery_specific_text[k]['out'] or 'Sorry' in gallery_specific_text[k]['out']: | |
continue | |
target_name = f'{capitalize_the_first_letter(entity_raw_name[s])} - {capitalize_the_first_letter(entity_raw_name[o])}' | |
if target_name not in gallery_specific_target_dict: | |
gallery_specific_target_dict[target_name] = i | |
gallery_specific_list.append(target_name) | |
gallery_specific_list.sort() | |
gallery_agnostic_list = [] | |
gallery_agnostic_target_dict = {} | |
for i, iid in enumerate(gallery_agnostic_target): | |
target_name = capitalize_the_first_letter(entity_raw_name[id_to_meshid[str(iid)]]) | |
k = f'{gallery_agnostic_link[i][0]}_{gallery_agnostic_link[i][1]}_{gallery_agnostic_link[i][2]}_{i}' | |
if 'sorry' in gallery_agnostic_text[k]['out'] or 'Sorry' in gallery_agnostic_text[k]['out']: | |
continue | |
if target_name not in gallery_agnostic_target_dict: | |
gallery_agnostic_target_dict[target_name] = i | |
gallery_agnostic_list.append(target_name) | |
gallery_agnostic_list.sort() | |
drug_dict = {} | |
disease_dict = {} | |
for k, v in entity_raw_name.items(): | |
#chemical_mesh:c050048 | |
tp = k.split('_')[0] | |
v = capitalize_the_first_letter(v) | |
if len(v) <= 4: | |
continue | |
if tp == 'chemical': | |
drug_dict[v] = k | |
elif tp == 'disease': | |
disease_dict[v] = k | |
drug_list = list(drug_dict.keys()) | |
disease_list = list(disease_dict.keys()) | |
drug_list.sort() | |
disease_list.sort() | |
init_mask = np.asarray([0] * n_ent).astype('int64') | |
init_mask = (init_mask == 1) | |
for k, v in filters.items(): | |
for kk, vv in v.items(): | |
tmp = init_mask.copy() | |
tmp[np.asarray(vv)] = True | |
t = torch.ByteTensor(tmp).to(args.device) | |
filters[k][kk] = t | |
print('done') | |
gpt_tokenizer = AutoTokenizer.from_pretrained('microsoft/biogpt') | |
gpt_tokenizer.pad_token = gpt_tokenizer.eos_token | |
gpt_model = BioGptForCausalLM.from_pretrained('microsoft/biogpt', pad_token_id=gpt_tokenizer.eos_token_id) | |
gpt_model.eval() | |
specific_model = utils.load_model(model_path, args, n_ent, n_rel, args.device) | |
specific_model.eval() | |
divide_bound, data_mean, data_std = attack.calculate_edge_bound(data, specific_model, args.device, n_ent) | |
print('done') | |
nlp = spacy.load("en_core_web_sm") | |
bart_model = BartForConditionalGeneration.from_pretrained('GanjinZero/biobart-large') | |
bart_model.eval() | |
bart_tokenizer = AutoTokenizer.from_pretrained('GanjinZero/biobart-large') | |
def tune_chatgpt(draft, attack_data, dpath): | |
dpath_i = 0 | |
bart_model.to(args.device1) | |
for i, v in enumerate(draft): | |
input = v['in'].replace('\n', '') | |
output = v['out'].replace('\n', '') | |
s, r, o = attack_data[i] | |
path_text = dpath[dpath_i].replace('\n', '') | |
dpath_i += 1 | |
text_s = entity_raw_name[id_to_meshid[s]] | |
text_o = entity_raw_name[id_to_meshid[o]] | |
doc = nlp(output) | |
words= input.split(' ') | |
tokenized_sens = [sen for sen in doc.sents] | |
sens = np.array([sen.text for sen in doc.sents]) | |
checkset = set([text_s, text_o]) | |
e_entity = set(['start_entity', 'end_entity']) | |
for path in path_text.split(' '): | |
a, b, c = path.split('|') | |
if a not in e_entity: | |
checkset.add(a) | |
if c not in e_entity: | |
checkset.add(c) | |
vec = [] | |
l = 0 | |
while(l < len(words)): | |
bo =False | |
for j in range(len(words), l, -1): # reversing is important !!! | |
cc = ' '.join(words[l:j]) | |
if (cc in checkset): | |
vec += [True] * (j-l) | |
l = j | |
bo = True | |
break | |
if not bo: | |
vec.append(False) | |
l += 1 | |
vec, span = server_utils.find_mini_span(vec, words, checkset) | |
# vec = np.vectorize(lambda x: x in checkset)(words) | |
vec[-1] = True | |
prompt = [] | |
mask_num = 0 | |
for j, bo in enumerate(vec): | |
if not bo: | |
mask_num += 1 | |
else: | |
if mask_num > 0: | |
# mask_num = mask_num // 3 # span length ~ poisson distribution (lambda = 3) | |
mask_num = max(mask_num, 1) | |
mask_num= min(8, mask_num) | |
prompt += ['<mask>'] * mask_num | |
prompt.append(words[j]) | |
mask_num = 0 | |
prompt = ' '.join(prompt) | |
Text = [] | |
Assist = [] | |
for j in range(len(sens)): | |
Bart_input = list(sens[:j]) + [prompt] +list(sens[j+1:]) | |
assist = list(sens[:j]) + [input] +list(sens[j+1:]) | |
Text.append(' '.join(Bart_input)) | |
Assist.append(' '.join(assist)) | |
for j in range(len(sens)): | |
Bart_input = server_utils.mask_func(tokenized_sens[:j]) + [input] + server_utils.mask_func(tokenized_sens[j+1:]) | |
assist = list(sens[:j]) + [input] +list(sens[j+1:]) | |
Text.append(' '.join(Bart_input)) | |
Assist.append(' '.join(assist)) | |
batch_size = 8 | |
Outs = [] | |
for l in tqdm(range(0, len(Text), batch_size)): | |
R = min(len(Text), l + batch_size) | |
A = bart_tokenizer(Text[l:R], | |
truncation = True, | |
padding = True, | |
max_length = 1024, | |
return_tensors="pt") | |
input_ids = A['input_ids'].to(args.device1) | |
attention_mask = A['attention_mask'].to(args.device1) | |
aaid = bart_model.generate(input_ids, attention_mask = attention_mask, num_beams = 5, max_length = 1024) | |
outs = bart_tokenizer.batch_decode(aaid, skip_special_tokens=True, clean_up_tokenization_spaces=False) | |
Outs += outs | |
bart_model.to('cpu') | |
return span, prompt, Outs, Text, Assist | |
def score_and_select(s, r, o, span , prompt , sen_list, BART_in, Assist, dpath, v): | |
criterion = CrossEntropyLoss(reduction="none") | |
text_s = entity_raw_name[id_to_meshid[str(s)]] | |
text_o = entity_raw_name[id_to_meshid[str(o)]] | |
sen_list = [server_utils.process(text) for text in sen_list] | |
path_text = dpath[0].replace('\n', '') | |
checkset = set([text_s, text_o]) | |
e_entity = set(['start_entity', 'end_entity']) | |
for path in path_text.split(' '): | |
a, b, c = path.split('|') | |
if a not in e_entity: | |
checkset.add(a) | |
if c not in e_entity: | |
checkset.add(c) | |
input = v['in'].replace('\n', '') | |
output = v['out'].replace('\n', '') | |
doc = nlp(output) | |
gpt_sens = [sen.text for sen in doc.sents] | |
assert len(gpt_sens) == len(sen_list) // 2 | |
word_sets = [] | |
for sen in gpt_sens: | |
word_sets.append(set(sen.split(' '))) | |
def sen_align(word_sets, modified_word_sets): | |
l = 0 | |
while(l < len(modified_word_sets)): | |
if len(word_sets[l].intersection(modified_word_sets[l])) > len(word_sets[l]) * 0.8: | |
l += 1 | |
else: | |
break | |
if l == len(modified_word_sets): | |
return -1, -1, -1, -1 | |
r = l + 1 | |
r1 = None | |
r2 = None | |
for pos1 in range(r, len(word_sets)): | |
for pos2 in range(r, len(modified_word_sets)): | |
if len(word_sets[pos1].intersection(modified_word_sets[pos2])) > len(word_sets[pos1]) * 0.8: | |
r1 = pos1 | |
r2 = pos2 | |
break | |
if r1 is not None: | |
break | |
if r1 is None: | |
r1 = len(word_sets) | |
r2 = len(modified_word_sets) | |
return l, r1, l, r2 | |
replace_sen_list = [] | |
boundary = [] | |
assert len(sen_list) % 2 == 0 | |
for j in range(len(sen_list) // 2): | |
doc = nlp(sen_list[j]) | |
sens = [sen.text for sen in doc.sents] | |
modified_word_sets = [set(sen.split(' ')) for sen in sens] | |
l1, r1, l2, r2 = sen_align(word_sets, modified_word_sets) | |
boundary.append((l1, r1, l2, r2)) | |
if l1 == -1: | |
replace_sen_list.append(sen_list[j]) | |
continue | |
check_text = ' '.join(sens[l2: r2]) | |
replace_sen_list.append(' '.join(gpt_sens[:l1] + [check_text] + gpt_sens[r1:])) | |
sen_list = replace_sen_list + sen_list[len(sen_list) // 2:] | |
gpt_model.to(args.device1) | |
sen_list.append(output) | |
tokens = gpt_tokenizer( sen_list, | |
truncation = True, | |
padding = True, | |
max_length = 1024, | |
return_tensors="pt") | |
target_ids = tokens['input_ids'].to(args.device1) | |
attention_mask = tokens['attention_mask'].to(args.device1) | |
L = len(sen_list) | |
ret_log_L = [] | |
for l in tqdm(range(0, L, 5)): | |
R = min(L, l + 5) | |
target = target_ids[l:R, :] | |
attention = attention_mask[l:R, :] | |
outputs = gpt_model(input_ids = target, | |
attention_mask = attention, | |
labels = target) | |
logits = outputs.logits | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = target[..., 1:].contiguous() | |
Loss = criterion(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1)) | |
Loss = Loss.view(-1, shift_logits.shape[1]) | |
attention = attention[..., 1:].contiguous() | |
log_Loss = (torch.mean(Loss * attention.float(), dim = 1) / torch.mean(attention.float(), dim = 1)) | |
ret_log_L.append(log_Loss.detach()) | |
log_Loss = torch.cat(ret_log_L, -1).cpu().numpy() | |
gpt_model.to('cpu') | |
p = np.argmin(log_Loss) | |
return sen_list[p] | |
def generate_template_for_triplet(attack_data): | |
criterion = CrossEntropyLoss(reduction="none") | |
gpt_model.to(args.device1) | |
print('Generating template ...') | |
GPT_batch_size = 8 | |
single_sentence = [] | |
test_text = [] | |
test_dp = [] | |
test_parse = [] | |
s, r, o = attack_data[0] | |
dependency_sen_dict = retieve_sentence_through_edgetype[int(r)]['manual'] | |
candidate_sen = [] | |
Dp_path = [] | |
L = len(dependency_sen_dict.keys()) | |
bound = 500 // L | |
if bound == 0: | |
bound = 1 | |
for dp_path, sen_list in dependency_sen_dict.items(): | |
if len(sen_list) > bound: | |
index = np.random.choice(np.array(range(len(sen_list))), bound, replace=False) | |
sen_list = [sen_list[aa] for aa in index] | |
ssen_list = [] | |
for aa in range(len(sen_list)): | |
paper_id, sen_id = sen_list[aa] | |
if raw_text_sen[paper_id][sen_id]['start_formatted'] == raw_text_sen[paper_id][sen_id]['end_formatted']: | |
continue | |
ssen_list.append(sen_list[aa]) | |
sen_list = ssen_list | |
candidate_sen += sen_list | |
Dp_path += [dp_path] * len(sen_list) | |
text_s = entity_raw_name[id_to_meshid[s]] | |
text_o = entity_raw_name[id_to_meshid[o]] | |
candidate_text_sen = [] | |
candidate_ori_sen = [] | |
candidate_parse_sen = [] | |
for paper_id, sen_id in candidate_sen: | |
sen = raw_text_sen[paper_id][sen_id] | |
text = sen['text'] | |
candidate_ori_sen.append(text) | |
ss = sen['start_formatted'] | |
oo = sen['end_formatted'] | |
text = text.replace('-LRB-', '(') | |
text = text.replace('-RRB-', ')') | |
text = text.replace('-LSB-', '[') | |
text = text.replace('-RSB-', ']') | |
text = text.replace('-LCB-', '{') | |
text = text.replace('-RCB-', '}') | |
parse_text = text | |
parse_text = parse_text.replace(ss, text_s.replace(' ', '_')) | |
parse_text = parse_text.replace(oo, text_o.replace(' ', '_')) | |
text = text.replace(ss, text_s) | |
text = text.replace(oo, text_o) | |
text = text.replace('_', ' ') | |
candidate_text_sen.append(text) | |
candidate_parse_sen.append(parse_text) | |
tokens = gpt_tokenizer( candidate_text_sen, | |
truncation = True, | |
padding = True, | |
max_length = 300, | |
return_tensors="pt") | |
target_ids = tokens['input_ids'].to(args.device1) | |
attention_mask = tokens['attention_mask'].to(args.device1) | |
L = len(candidate_text_sen) | |
assert L > 0 | |
ret_log_L = [] | |
for l in tqdm(range(0, L, GPT_batch_size)): | |
R = min(L, l + GPT_batch_size) | |
target = target_ids[l:R, :] | |
attention = attention_mask[l:R, :] | |
outputs = gpt_model(input_ids = target, | |
attention_mask = attention, | |
labels = target) | |
logits = outputs.logits | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = target[..., 1:].contiguous() | |
Loss = criterion(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1)) | |
Loss = Loss.view(-1, shift_logits.shape[1]) | |
attention = attention[..., 1:].contiguous() | |
log_Loss = (torch.mean(Loss * attention.float(), dim = 1) / torch.mean(attention.float(), dim = 1)) | |
ret_log_L.append(log_Loss.detach()) | |
ret_log_L = list(torch.cat(ret_log_L, -1).cpu().numpy()) | |
sen_score = list(zip(candidate_text_sen, ret_log_L, candidate_ori_sen, Dp_path, candidate_parse_sen)) | |
sen_score.sort(key = lambda x: x[1]) | |
Len = len(sen_score) | |
p = 0 | |
if Len > 10: | |
p = np.random.choice(np.array(range(Len // 10)), 1)[0] | |
test_text.append(sen_score[p][2]) | |
test_dp.append(sen_score[p][3]) | |
test_parse.append(sen_score[p][4]) | |
single_sentence.append(sen_score[p][0]) | |
gpt_model.to('cpu') | |
return single_sentence, test_text, test_dp, test_parse | |
meshids = list(id_to_meshid.values()) | |
cal = { | |
'chemical' : 0, | |
'disease' : 0, | |
'gene' : 0 | |
} | |
for meshid in meshids: | |
cal[meshid.split('_')[0]] += 1 | |
def check_reasonable(s, r, o): | |
train_trip = np.asarray([[s, r, o]]) | |
train_trip = torch.from_numpy(train_trip.astype('int64')).to(device) | |
edge_loss = get_model_loss_without_softmax(train_trip, specific_model, device).squeeze() | |
# edge_losse_log_prob = torch.log(F.softmax(-edge_loss, dim = -1)) | |
edge_loss = edge_loss.item() | |
edge_loss = (edge_loss - data_mean) / data_std | |
edge_losses_prob = 1 / ( 1 + np.exp(edge_loss - divide_bound) ) | |
bound = 1 - args.reasonable_rate | |
return (edge_losses_prob > bound), edge_losses_prob | |
edgeid_to_edgetype = {} | |
edgeid_to_reversemask = {} | |
for k, id_list in Parameters.edge_type_to_id.items(): | |
for iid, mask in zip(id_list, Parameters.reverse_mask[k]): | |
edgeid_to_edgetype[str(iid)] = k | |
edgeid_to_reversemask[str(iid)] = mask | |
reverse_tot = 0 | |
G = nx.DiGraph() | |
for s, r, o in data: | |
assert id_to_meshid[s].split('_')[0] == edgeid_to_edgetype[r].split('-')[0] | |
if edgeid_to_reversemask[r] == 1: | |
reverse_tot += 1 | |
G.add_edge(int(o), int(s)) | |
else: | |
G.add_edge(int(s), int(o)) | |
print('Page ranking ...') | |
pagerank_value_1 = nx.pagerank(G, max_iter = 200, tol=1.0e-7) | |
drug_meshid = [] | |
drug_list = [] | |
for meshid, nm in entity_raw_name.items(): | |
if nm.lower() in drug_term and meshid.split('_')[0] == 'chemical': | |
drug_meshid.append(meshid) | |
drug_list.append(capitalize_the_first_letter(nm)) | |
drug_list = list(set(drug_list)) | |
drug_list.sort() | |
drug_meshid = set(drug_meshid) | |
pr = list(pagerank_value_1.items()) | |
pr.sort(key = lambda x: x[1]) | |
sorted_rank = { 'chemical' : [], | |
'gene' : [], | |
'disease': [], | |
'merged' : []} | |
for iid, score in pr: | |
tp = id_to_meshid[str(iid)].split('_')[0] | |
if tp == 'chemical': | |
if id_to_meshid[str(iid)] in drug_meshid: | |
sorted_rank[tp].append((iid, score)) | |
else: | |
sorted_rank[tp].append((iid, score)) | |
sorted_rank['merged'].append((iid, score)) | |
llen = len(sorted_rank['merged']) | |
sorted_rank['merged'] = sorted_rank['merged'][llen * 3 // 4 : ] | |
def generate_specific_attack_edge(start_entity, end_entity): | |
if device == torch.device('cpu'): | |
print('We can just set the malicious link equals to the target link, since the generation of malicious link is too slow on cpu') | |
return entity_to_id[drug_dict[start_entity]], '10', entity_to_id[disease_dict[end_entity]] | |
global specific_model | |
specific_model.to(device) | |
strat_meshid = drug_dict[start_entity] | |
end_meshid = disease_dict[end_entity] | |
start_entity = entity_to_id[strat_meshid] | |
end_entity = entity_to_id[end_meshid] | |
target_data = np.array([[start_entity, '10', end_entity]]) | |
neighbors = attack.generate_nghbrs(target_data, edge_nghbrs, args) | |
ret = f'Generating malicious link for {strat_meshid}_treatment_{end_meshid}', 'Generation malicious text ...' | |
param_optimizer = list(specific_model.named_parameters()) | |
param_influence = [] | |
for n,p in param_optimizer: | |
param_influence.append(p) | |
len_list = [] | |
for v in neighbors.values(): | |
len_list.append(len(v)) | |
mean_len = np.mean(len_list) | |
attack_trip, score_record = attack.addition_attack(param_influence, args.device, n_rel, data, target_data, neighbors, specific_model, filters, entityid_to_nodetype, args.attack_batch_size, args, load_Record = args.load_existed, divide_bound = divide_bound, data_mean = data_mean, data_std = data_std, cache_intermidiate = False) | |
s, r, o = attack_trip[0] | |
specific_model.to('cpu') | |
return s, r, o | |
def generate_agnostic_attack_edge(targets): | |
specific_model.to(device) | |
attack_edge_list = [] | |
for target in targets: | |
candidate_list = [] | |
score_list = [] | |
loss_list = [] | |
main_dict = {} | |
for iid, score in tqdm(sorted_rank['merged']): | |
a = G.number_of_edges(iid, target) + 1 | |
if a != 1: | |
continue | |
b = G.out_degree(iid) + 1 | |
tp = id_to_meshid[str(iid)].split('_')[0] | |
edge_losses = [] | |
r_list = [] | |
for r in range(len(edgeid_to_edgetype)): | |
r_tp = edgeid_to_edgetype[str(r)] | |
if (edgeid_to_reversemask[str(r)] == 0 and r_tp.split('-')[0] == tp and r_tp.split('-')[1] == 'chemical'): | |
train_trip = np.array([[iid, r, target]]) | |
train_trip = torch.from_numpy(train_trip.astype('int64')).to(device) | |
edge_loss = get_model_loss_without_softmax(train_trip, specific_model, device).squeeze() | |
edge_losses.append(edge_loss.unsqueeze(0).detach()) | |
r_list.append(r) | |
elif(edgeid_to_reversemask[str(r)] == 1 and r_tp.split('-')[0] == 'chemical' and r_tp.split('-')[1] == tp): | |
train_trip = np.array([[iid, r, target]]) # add batch dim | |
train_trip = torch.from_numpy(train_trip.astype('int64')).to(device) | |
edge_loss = get_model_loss_without_softmax(train_trip, specific_model, device).squeeze() | |
edge_losses.append(edge_loss.unsqueeze(0).detach()) | |
r_list.append(r) | |
if len(edge_losses)==0: | |
continue | |
min_index = torch.argmin(torch.cat(edge_losses, dim = 0)) | |
r = r_list[min_index] | |
r_tp = edgeid_to_edgetype[str(r)] | |
old_len = len(candidate_list) | |
if (edgeid_to_reversemask[str(r)] == 0): | |
bo, prob = check_reasonable(iid, r, target) | |
if bo: | |
candidate_list.append((iid, r, target)) | |
score_list.append(score * a / b) | |
loss_list.append(edge_losses[min_index].item()) | |
if (edgeid_to_reversemask[str(r)] == 1): | |
bo, prob = check_reasonable(target, r, iid) | |
if bo: | |
candidate_list.append((target, r, iid)) | |
score_list.append(score * a / b) | |
loss_list.append(edge_losses[min_index].item()) | |
if len(candidate_list) == 0: | |
if args.added_edge_num == '' or int(args.added_edge_num) == 1: | |
attack_edge_list.append((-1,-1,-1)) | |
else: | |
attack_edge_list.append([]) | |
continue | |
norm_score = np.array(score_list) / np.sum(score_list) | |
norm_loss = np.exp(-np.array(loss_list)) / np.sum(np.exp(-np.array(loss_list))) | |
total_score = norm_score * norm_loss | |
total_score_index = list(zip(range(len(total_score)), total_score)) | |
total_score_index.sort(key = lambda x: x[1], reverse = True) | |
total_index = np.argsort(total_score)[::-1] | |
assert total_index[0] == total_score_index[0][0] | |
# find rank of main index | |
max_index = np.argmax(total_score) | |
assert max_index == total_score_index[0][0] | |
tmp_add = [] | |
add_num = 1 | |
if args.added_edge_num == '' or int(args.added_edge_num) == 1: | |
attack_edge_list.append(candidate_list[max_index]) | |
else: | |
add_num = int(args.added_edge_num) | |
for i in range(add_num): | |
tmp_add.append(candidate_list[total_score_index[i][0]]) | |
attack_edge_list.append(tmp_add) | |
specific_model.to('cpu') | |
return attack_edge_list[0] | |
def specific_func(start_entity, end_entity, API_key = ''): | |
try: | |
args.reasonable_rate = 0.5 | |
s, r, o = generate_specific_attack_edge(start_entity, end_entity) | |
if int(s) == -1: | |
return 'All candidate links are filterd out by defender, so no malicious link can be generated', 'No malicious abstract can be generated' | |
s_name = entity_raw_name[id_to_entity[str(s)]] | |
r_name = Parameters.edge_id_to_type[int(r)].split(':')[1] | |
o_name = entity_raw_name[id_to_entity[str(o)]] | |
attack_data = np.array([[s, r, o]]) | |
path_list = [] | |
with open(f'DiseaseSpecific/generate_abstract/path/random_{args.reasonable_rate}_path.json', 'r') as fl: | |
for line in fl.readlines(): | |
line.replace('\n', '') | |
path_list.append(line) | |
with open(f'DiseaseSpecific/generate_abstract/random_{args.reasonable_rate}_sentence.json', 'r') as fl: | |
sentence_dict = json.load(fl) | |
dpath = [] | |
for k, v in sentence_dict.items(): | |
if f'{s}_{r}_{o}' in k: | |
single_sentence = [v] | |
dpath = [path_list[int(k.split('_')[-1])]] | |
break | |
if len(dpath) == 0: | |
single_sentence, _, dpath, _ = generate_template_for_triplet(attack_data) | |
elif not(s_name in single_sentence[0] and o_name in single_sentence[0]): | |
single_sentence, _, dpath, _ = generate_template_for_triplet(attack_data) | |
print('Using ChatGPT for generation...') | |
API_key = API_key.strip() | |
if API_key != '': | |
draft = generate_abstract(single_sentence[0], API_key) | |
else: | |
draft = generate_abstract(single_sentence[0]) | |
if 'sorry' in draft or 'Sorry' in draft: | |
return 'All candidate links are filterd out by defender, so no malicious link can be generated', 'No malicious abstract can be generated' | |
if device != torch.device('cpu'): | |
print('Using BioBART for tuning...') | |
span , prompt , sen_list, BART_in, Assist = tune_chatgpt([{'in':single_sentence[0], 'out': draft}], attack_data, dpath) | |
text = score_and_select(s, r, o, span , prompt , sen_list, BART_in, Assist, dpath, {'in':single_sentence[0], 'out': draft}) | |
else: | |
text = draft | |
return f'{capitalize_the_first_letter(s_name)} - {capitalize_the_first_letter(r_name)} - {capitalize_the_first_letter(o_name)}', server_utils.process(text) | |
# f'The sentence is: {single_sentence[0]}\n The path is: {dpath[0]}' | |
except: | |
# return message in error | |
return 'Error :(', traceback.format_exc() | |
def agnostic_func(agnostic_entity, API_key = ''): | |
try: | |
args.reasonable_rate = 0.7 | |
target_id = entity_to_id[drug_dict[agnostic_entity]] | |
s = generate_agnostic_attack_edge([int(target_id)]) | |
if len(s) == 0: | |
return 'All candidate links are filterd out by defender, so no malicious link can be generated', 'No malicious abstract can be generated' | |
if int(s[0]) == -1: | |
return 'All candidate links are filterd out by defender, so no malicious link can be generated', 'No malicious abstract can be generated' | |
s, r, o = str(s[0]), str(s[1]), str(s[2]) | |
s_name = entity_raw_name[id_to_entity[str(s)]] | |
r_name = Parameters.edge_id_to_type[int(r)].split(':')[1] | |
o_name = entity_raw_name[id_to_entity[str(o)]] | |
attack_data = np.array([[s, r, o]]) | |
single_sentence, _, dpath, _ = generate_template_for_triplet(attack_data) | |
print('Using ChatGPT for generation...') | |
API_key = API_key.strip() | |
if API_key != '': | |
draft = generate_abstract(single_sentence[0], API_key) | |
else: | |
draft = generate_abstract(single_sentence[0]) | |
if 'sorry' in draft or 'Sorry' in draft: | |
return 'All candidate links are filterd out by defender, so no malicious link can be generated', 'No malicious abstract can be generated' | |
if device != torch.device('cpu'): | |
print('Using BioBART for tuning...') | |
span , prompt , sen_list, BART_in, Assist = tune_chatgpt([{'in':single_sentence[0], 'out': draft}], attack_data, dpath) | |
text = score_and_select(s, r, o, span , prompt , sen_list, BART_in, Assist, dpath, {'in':single_sentence[0], 'out': draft}) | |
else: | |
text = draft | |
return f'{capitalize_the_first_letter(s_name)} - {capitalize_the_first_letter(r_name)} - {capitalize_the_first_letter(o_name)}', server_utils.process(text) | |
except: | |
# return message in error | |
return 'Error :(', traceback.format_exc() | |
def gallery_specific_func(specific_target): | |
index = gallery_specific_target_dict[specific_target] | |
s, r, o = gallery_specific_link[index] | |
s_name = entity_raw_name[id_to_entity[str(s)]] | |
r_name = Parameters.edge_id_to_type[int(r)].split(':')[1] | |
o_name = entity_raw_name[id_to_entity[str(o)]] | |
k = f'{s}_{r}_{o}_{index}' | |
inn = gallery_specific_text[k]['in'] | |
text = gallery_specific_text[k]['out'] | |
if inn in text: | |
text = gallery_specific_chat[k]['out'] | |
return f'{capitalize_the_first_letter(s_name)} - {capitalize_the_first_letter(r_name)} - {capitalize_the_first_letter(o_name)}', server_utils.process(text) | |
def gallery_agnostic_func(agnostic_target): | |
index = gallery_agnostic_target_dict[agnostic_target] | |
s, r, o = gallery_agnostic_link[index] | |
s_name = entity_raw_name[id_to_entity[str(s)]] | |
r_name = Parameters.edge_id_to_type[int(r)].split(':')[1] | |
o_name = entity_raw_name[id_to_entity[str(o)]] | |
k = f'{s}_{r}_{o}_{index}' | |
inn = gallery_agnostic_text[k]['in'] | |
text = gallery_agnostic_text[k]['out'] | |
if inn in text: | |
text = gallery_agnostic_chat[k]['out'] | |
return f'{capitalize_the_first_letter(s_name)} - {capitalize_the_first_letter(r_name)} - {capitalize_the_first_letter(o_name)}', server_utils.process(text) | |
#%% | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.Markdown("Poison medical knowledge with Scorpius") | |
# with gr.Column(): | |
with gr.Row(): | |
# Center | |
with gr.Column(): | |
gr.Markdown("Select your poisoning target") | |
with gr.Tab('Gallery'): | |
with gr.Tab('Target specific'): | |
specific_target = gr.Dropdown(gallery_specific_list, label="Promoting drug and target disease") | |
gallery_specific_generation_button = gr.Button('Poison!') | |
with gr.Tab('Target agnostic'): | |
agnostic_target = gr.Dropdown(gallery_agnostic_list, label="Promoting drug") | |
gallery_agnostic_generation_button = gr.Button('Poison!') | |
with gr.Tab('Poison'): | |
with gr.Tab('Target specific'): | |
with gr.Column(): | |
with gr.Row(): | |
start_entity = gr.Dropdown(drug_list, label="Promoting drug") | |
end_entity = gr.Dropdown(disease_list, label="Target disease") | |
if device == torch.device('cpu'): | |
gr.Markdown("Since the project is currently running on the CPU, we directly treat the malicious link as equivalent to the poisoning target, to accelerate the generation process.") | |
specific_generation_button = gr.Button('Poison!') | |
gr.Markdown('Please type your openai API key in the textbox below before clicking the **Poison!** button. If the text box is empty, we will use the default API, but the balance of the default API is limited, so the generation may fail. \n We promise that we will not steal your API key in any way. If you still have this concern, please download the source code from **Files**, then use `python CUDA_VISIBLE_DEVICES=0 python server.py` to run the offline version.') | |
API_key_specific = gr.Textbox(label="API key") | |
with gr.Tab('Target agnostic'): | |
agnostic_entity = gr.Dropdown(drug_list, label="Promoting drug") | |
agnostic_generation_button = gr.Button('Poison!') | |
gr.Markdown('Please type your openai API key in the textbox below before clicking the **Poison!** button. If the text box is empty, we will use the default API, but the balance of the default API is limited, so the generation may fail. \n We promise that we will not steal your API key in any way. If you still have this concern, please download the source code from **Files**, then use `python CUDA_VISIBLE_DEVICES=0 python server.py` to run the offline version.') | |
API_key_agnostic = gr.Textbox(label="API key") | |
with gr.Column(): | |
gr.Markdown("Generation") | |
malicisous_link = gr.Textbox(lines=1, label="Malicious link") | |
# gr.Markdown("Malicious text") | |
malicious_text = gr.Textbox(label="Malicious text", lines=5) | |
specific_generation_button.click(specific_func, inputs=[start_entity, end_entity, API_key_specific], outputs=[malicisous_link, malicious_text]) | |
agnostic_generation_button.click(agnostic_func, inputs=[agnostic_entity, API_key_agnostic], outputs=[malicisous_link, malicious_text]) | |
gallery_specific_generation_button.click(gallery_specific_func, inputs=[specific_target], outputs=[malicisous_link, malicious_text]) | |
gallery_agnostic_generation_button.click(gallery_agnostic_func, inputs=[agnostic_target], outputs=[malicisous_link, malicious_text]) | |
# demo.launch(server_name="0.0.0.0", server_port=8000, debug=False) | |
demo.launch() |