Spaces:
Running
Running
File size: 37,588 Bytes
ac7c391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 |
#%%
import pickle as pkl
from typing import Dict, Tuple, List
import os
import numpy as np
import json
import dill
import logging
import argparse
import math
from pprint import pprint
import pandas as pd
from collections import defaultdict
import copy
import time
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
import torch.autograd as autograd
from torch.nn import functional as F
from torch.nn.modules.loss import CrossEntropyLoss
from model import Distmult, Complex, Conve
import utils
import sys
import dill
sys.path.append("..")
import Parameters
from transformers import GPT2Tokenizer, GPT2LMHeadModel
logger = None
def generate_nghbrs_single_entity(x, edge_nghbrs, bound):
ret_S = set(x)
ret_L = [x]
b = 0
while(b < len(ret_L)):
s = ret_L[b]
if s in edge_nghbrs.keys():
for v in edge_nghbrs[s]:
if v not in ret_S:
ret_S.add(v)
ret_L.append(v)
if len(ret_L) == bound:
return ret_L
b += 1
return ret_L
def generate_nghbrs(target_data, edge_nghbrs, args):
n_dict = {}
for i, (s, r, o) in enumerate(target_data):
L_s = generate_nghbrs_single_entity(s, edge_nghbrs, args.neighbor_num)
L_o = generate_nghbrs_single_entity(o, edge_nghbrs, args.neighbor_num)
n_dict[i] = list(set(L_s + L_o))
n_dict[i].sort()
return n_dict
#%%
def check_edge(s, r, o, used_trip = None, args = None):
"""Double check"""
if args is None:
return True
if not args.target_existed:
assert (s+'_'+o in used_trip) == args.target_existed
else:
s = entityid_to_nodetype[s]
o = entityid_to_nodetype[o]
r_tp = Parameters.edge_id_to_type[int(r)]
r_tp = r_tp.split(':')[0]
r_tp = r_tp.split('-')
assert s == r_tp[0] and o == r_tp[1]
def get_model_loss(batch, model, device, args = None):
s,r,o = batch[:,0], batch[:,1], batch[:,2]
emb_s = model.emb_e(s).squeeze(dim=1)
emb_r = model.emb_rel(r).squeeze(dim=1)
emb_o = model.emb_e(o).squeeze(dim=1)
if args.add_reciprocals:
r_rev = r + n_rel
emb_rrev = model.emb_rel(r_rev).squeeze(dim=1)
else:
r_rev = r
emb_rrev = emb_r
pred_sr = model.forward(emb_s, emb_r, mode='rhs')
loss_sr = model.loss(pred_sr, o) # Cross entropy loss
pred_or = model.forward(emb_o, emb_rrev, mode='lhs')
loss_or = model.loss(pred_or, s)
train_loss = loss_sr + loss_or
return train_loss
def get_model_loss_without_softmax(batch, model, device=None):
with torch.no_grad():
s,r,o = batch[:,0], batch[:,1], batch[:,2]
emb_s = model.emb_e(s).squeeze(dim=1)
emb_r = model.emb_rel(r).squeeze(dim=1)
pred = model.forward(emb_s, emb_r)
return -pred[range(o.shape[0]), o]
def lp_regularizer(model, weight, p):
trainable_params = [model.emb_e.weight, model.emb_rel.weight]
norm = 0
for i in range(len(trainable_params)):
norm += weight * torch.sum( torch.abs(trainable_params[i]) ** p)
return norm
def n3_regularizer(factors, weight, p):
norm = 0
for f in factors:
norm += weight * torch.sum(torch.abs(f) ** p)
return norm / factors[0].shape[0]
def get_train_loss(batch, model, device, args):
#batch = batch[0].to(device)
s,r,o = batch[:,0], batch[:,1], batch[:,2]
emb_s = model.emb_e(s).squeeze(dim=1)
emb_r = model.emb_rel(r).squeeze(dim=1)
emb_o = model.emb_e(o).squeeze(dim=1)
if args.add_reciprocals:
r_rev = r + n_rel
emb_rrev = model.emb_rel(r_rev).squeeze(dim=1)
else:
r_rev = r
emb_rrev = emb_r
pred_sr = model.forward(emb_s, emb_r, mode='rhs')
loss_sr = model.loss(pred_sr, o) # loss is cross entropy loss
pred_or = model.forward(emb_o, emb_rrev, mode='lhs')
loss_or = model.loss(pred_or, s)
train_loss = loss_sr + loss_or
if (args.reg_weight != 0.0 and args.reg_norm == 3):
#self.logger.info('Computing regularizer weight')
if model == 'complex':
emb_dim = args.embedding_dim #int(self.args.embedding_dim/2)
lhs = (emb_s[:, :emb_dim], emb_s[:, emb_dim:])
rel = (emb_r[:, :emb_dim], emb_r[:, emb_dim:])
rel_rev = (emb_rrev[:, :emb_dim], emb_rrev[:, emb_dim:])
rhs = (emb_o[:, :emb_dim], emb_o[:, emb_dim:])
#print(lhs[0].shape, lhs[1].shape)
factors_sr = (torch.sqrt(lhs[0] ** 2 + lhs[1] ** 2),
torch.sqrt(rel[0] ** 2 + rel[1] ** 2),
torch.sqrt(rhs[0] ** 2 + rhs[1] ** 2)
)
factors_or = (torch.sqrt(lhs[0] ** 2 + lhs[1] ** 2),
torch.sqrt(rel_rev[0] ** 2 + rel_rev[1] ** 2),
torch.sqrt(rhs[0] ** 2 + rhs[1] ** 2)
)
else:
factors_sr = (emb_s, emb_r, emb_o)
factors_or = (emb_s, emb_rrev, emb_o)
train_loss += n3_regularizer(factors_sr, args.reg_weight, p=3)
train_loss += n3_regularizer(factors_or, args.reg_weight, p=3)
if (args.reg_weight != 0.0 and args.reg_norm == 2):
train_loss += lp_regularizer(model, args.reg_weight, p=2)
return train_loss
def hv(loss, model_params, v):
grad = autograd.grad(loss, model_params, create_graph=True, retain_graph=True)
Hv = autograd.grad(grad, model_params, grad_outputs=v)
return Hv
def gather_flat_grad(grads):
views = []
for p in grads:
if p.data.is_sparse:
view = p.data.to_dense().view(-1)
else:
view = p.data.view(-1)
views.append(view)
return torch.cat(views, 0)
def get_inverse_hvp_lissa(v, model, device, param_influence, train_data, args):
damping = args.damping
num_samples = args.lissa_repeat
scale = args.scale
train_batch_size = args.lissa_batch_size
lissa_num_batches = math.ceil(train_data.shape[0]/train_batch_size)
recursion_depth = int(lissa_num_batches*args.lissa_depth)
ihvp = None
# print('inversing hvp...')
for i in range(num_samples):
cur_estimate = v
#lissa_data_iterator = iter(train_loader)
input_data = torch.from_numpy(train_data.astype('int64'))
actual_examples = input_data[torch.randperm(input_data.shape[0]), :]
del input_data
b_begin = 0
for j in range(recursion_depth):
model.zero_grad() # same as optimizer.zero_grad()
if b_begin >= actual_examples.shape[0]:
b_begin = 0
input_data = torch.from_numpy(train_data.astype('int64'))
actual_examples = input_data[torch.randperm(input_data.shape[0]), :]
del input_data
input_batch = actual_examples[b_begin: b_begin + train_batch_size]
input_batch = input_batch.to(device)
train_loss = get_train_loss(input_batch, model, device, args)
hvp = hv(train_loss, param_influence, cur_estimate)
cur_estimate = [_a + (1-damping)*_b - _c / scale for _a, _b, _c in zip(v, cur_estimate, hvp)]
# if (j%200 == 0) or (j == recursion_depth -1 ):
# logger.info("Recursion at depth %s: norm is %f" % (j, np.linalg.norm(gather_flat_grad(cur_estimate).cpu().numpy())))
b_begin += train_batch_size
if ihvp == None:
ihvp = [_a / scale for _a in cur_estimate]
else:
ihvp = [_a + _b / scale for _a, _b in zip(ihvp, cur_estimate)]
# logger.info("Final ihvp norm is %f" % (np.linalg.norm(gather_flat_grad(ihvp).cpu().numpy())))
return_ihvp = gather_flat_grad(ihvp)
return_ihvp /= num_samples
return return_ihvp
#%%
def before_global_attack(device, n_rel, data, target_data, neighbors, model,
filters:Dict[str, Dict[Tuple[str, int], torch.Tensor]],
entityid_to_nodetype, batch_size, args, lissa_path, target_disease):
if os.path.exists(lissa_path) and not args.update_lissa:
with open(lissa_path, 'rb') as fl:
ret = dill.load(fl)
return ret
ret = {}
test_data = []
for i in target_disease:
tp = entityid_to_nodetype[str(i)]
# r = torch.LongTensor([[10]]).to(device)
assert tp == 'disease'
if tp == 'disease':
for target in target_data:
test_data.append([str(target), str(10), str(i)])
test_data = np.array(test_data)
for target_trip in tqdm(test_data):
target_trip_ori = target_trip
trip_name = '_'.join(list(target_trip_ori))
target_trip = target_trip[None, :] # add a batch dimension
target_trip = torch.from_numpy(target_trip.astype('int64')).to(device)
# target_s, target_r, target_o = target_trip[:,0], target_trip[:,1], target_trip[:,2]
# target_vec = model.score_triples_vec(target_s, target_r, target_o)
model.eval()
model.zero_grad()
target_loss = get_model_loss(target_trip, model, device)
target_grads = autograd.grad(target_loss, param_influence)
model.train()
inverse_hvp = get_inverse_hvp_lissa(target_grads, model, device,
param_influence, data, args)
model.eval()
inverse_hvp = inverse_hvp.detach().cpu().unsqueeze(0)
ret[trip_name] = inverse_hvp
with open(lissa_path, 'wb') as fl:
dill.dump(ret, fl)
return ret
def global_addtion_attack(device, n_rel, data, target_data, neighbors, model,
filters:Dict[str, Dict[Tuple[str, int], torch.Tensor]],
entityid_to_nodetype, batch_size, args, lissa, target_disease):
logger.info('------ Generating edits per target triple ------')
start_time = time.time()
logger.info('Start time: {0}'.format(str(start_time)))
used_trip = set()
print("Processing used triples ...")
for s, r, o in tqdm(data):
used_trip.add(s+'_'+o)
# used_trip.add(o+'_'+s)
print('Size of used triples:', len(used_trip))
logger.info('Size of used triples: {0}'.format(len(used_trip)))
ret_trip = []
score_record = []
real_add_rank_ratio = 0
with open(score_path, 'rb') as fl:
score_record = pkl.load(fl)
for i, target in enumerate(target_data):
print('\n\n------ Attacking target tripid:', i, 'tot:', len(target_data), ' ------')
# lissa_hvp = []
target_trip = []
for disease in target_disease:
target_trip.append([target, str(10), disease])
# nm = '{}_{}_{}'.format(target, 10, disease)
# lissa_hvp.append(lissa[nm])
# lissa_hvp = torch.cat(lissa_hvp, dim = 0).to(device)
target_trip = np.array(target_trip)
target_trip = torch.from_numpy(target_trip.astype('int64')).to(device)
model.eval()
model.zero_grad()
target_loss = get_model_loss(target_trip, model, device)
target_grads = autograd.grad(target_loss, param_influence)
model.train()
inverse_hvp = get_inverse_hvp_lissa(target_grads, model, device,
param_influence, data, args)
model.eval()
nghbr_trip = []
s = str(target)
tp = entityid_to_nodetype[s]
for nghbr in tqdm(neighbors):
o = str(nghbr)
if s!=o and s+'_'+o not in used_trip:
for r in range(n_rel):
if (tp, r) in filters["rhs"].keys() and filters["rhs"][(tp, r)][int(o)] == True:
nghbr_trip.append([s, str(r), o])
nghbr_trip = np.asarray(nghbr_trip)
influences = []
edge_losses = []
# nghbr_cos_log_prob, nghbr_LM_log_prob = score_record[i]
# assert nghbr_cos_log_prob.shape[0] == nghbr_trip.shape[0]
for train_trip in tqdm(nghbr_trip):
#model.train() #batch norm cannot be used here
train_trip = train_trip[None, :] # add batch dim
train_trip = torch.from_numpy(train_trip.astype('int64')).to(device)
#### L-train gradient ####
edge_loss = get_model_loss_without_softmax(train_trip, model, device).squeeze()
edge_losses.append(edge_loss.unsqueeze(0).detach())
model.zero_grad()
train_loss = get_model_loss(train_trip, model, device, args)
train_grads = autograd.grad(train_loss, param_influence)
train_grads = gather_flat_grad(train_grads)
influence = torch.dot(inverse_hvp, train_grads) #default dim=1
influences.append(influence.unsqueeze(0).detach())
edge_losses = torch.cat(edge_losses, dim = -1)
influences = torch.cat(influences, dim = -1)
edge_losses_log_prob = torch.log(F.softmax(-edge_losses, dim = -1))
influences_log_prob = torch.log(F.softmax(influences, dim = -1))
inf_score_sorted, influences_sort = torch.sort(influences_log_prob, -1, descending=True)
edge_score_sorted, edge_sort = torch.sort(edge_losses_log_prob, -1, descending=True)
influences_sort = influences_sort.cpu().numpy()
edge_sort = edge_sort.cpu().numpy()
inf_score_sorted = inf_score_sorted.cpu().numpy()
edge_score_sorted = edge_score_sorted.cpu().numpy()
logger.info('')
logger.info('Top 8 inf_score: {}'.format(" ".join(map(str, list(inf_score_sorted[:8])))))
logger.info('Top 8 edge_score: {}'.format(" ".join(map(str, list(edge_score_sorted[:8])))))
nghbr_cos_log_prob = influences_log_prob.detach().cpu().numpy()
nghbr_LM_log_prob = edge_losses_log_prob.detach().cpu().numpy()
max_sim = np.max(nghbr_cos_log_prob)
min_sim = np.min(nghbr_cos_log_prob)
max_LM = np.max(nghbr_LM_log_prob)
min_LM = np.min(nghbr_LM_log_prob)
# final_score = nghbr_cos_log_prob + nghbr_LM_log_prob
final_score = nghbr_cos_log_prob
index = np.argmax(final_score[:-1])
# p = np.where(index == edge_sort)[0][0]
# logger.info('Added edge\'s edge rank ratio: {}'.format(p / edge_sort.shape[0]))
real_add_rank_ratio += p
add_trip = nghbr_trip[index]
logger.info('max_inf: {0:.8}, min_inf: {1:.8}, max_edge: {2:.8}, min_edge: {3:.8}'.format(max_sim, min_sim, max_LM, min_LM))
logger.info('Attack trip: {0}_{1}_{2}.\n Influnce score: {3:.8}. Edge score: {4:.8}.'.format(add_trip[0], add_trip[1], add_trip[2],
nghbr_cos_log_prob[index], nghbr_LM_log_prob[index]))
ret_trip.append(add_trip)
score_record.append((nghbr_cos_log_prob, nghbr_LM_log_prob))
real_add_rank_ratio = real_add_rank_ratio / target_data.shape[0]
logger.info('Mean real ratio: {}.'.format(real_add_rank_ratio))
return ret_trip, score_record
def addition_attack(param_influence, device, n_rel, data, target_data, neighbors, model,
filters:Dict[str, Dict[Tuple[str, int], torch.Tensor]],
entityid_to_nodetype, batch_size, args, load_Record = False, divide_bound = None, data_mean = None, data_std = None, cache_intermidiate = True):
if logger:
logger.info('------ Generating edits per target triple ------')
start_time = time.time()
if logger:
logger.info('Start time: {0}'.format(str(start_time)))
used_trip = set()
print("Processing used triples ...")
for s, r, o in tqdm(data):
used_trip.add(s+'_'+o)
# used_trip.add(o+'_'+s)
print('Size of used triples:', len(used_trip))
if logger:
logger.info('Size of used triples: {0}'.format(len(used_trip)))
nghbr_trip_len = []
ret_trip = []
score_record = []
direct_add_rank_ratio = 0
real_add_rank_ratio = 0
bad_ratio = 0
RRcord = []
print('****'*10)
if load_Record:
print('Load intermidiate file')
with open(intermidiate_path, 'rb') as fl:
RRcord = dill.load(fl)
else:
print('Donnot load intermidiate file')
for i, target_trip in enumerate(target_data):
print('\n\n------ Attacking target tripid:', i, ' ------')
target_nghbrs = neighbors[i]
for a in target_nghbrs:
if str(a) == '-1':
raise Exception('pppp')
target_trip_ori = target_trip
check_edge(target_trip[0], target_trip[1], target_trip[2], used_trip)
target_trip = target_trip[None, :] # add a batch dimension
target_trip = torch.from_numpy(target_trip.astype('int64')).to(device)
# target_s, target_r, target_o = target_trip[:,0], target_trip[:,1], target_trip[:,2]
# target_vec = model.score_triples_vec(target_s, target_r, target_o)
model.eval()
if load_Record:
o_target_trip, nghbr_trip, edge_losses, influences, edge_losses_log_prob, influences_log_prob = RRcord[i]
assert (o_target_trip.cpu() == target_trip.cpu()).sum().item() == 3
else:
model.zero_grad()
target_loss = get_model_loss(target_trip, model, device, args)
target_grads = autograd.grad(target_loss, param_influence)
model.train()
inverse_hvp = get_inverse_hvp_lissa(target_grads, model, device,
param_influence, data, args)
model.eval()
nghbr_trip = []
valid_trip = 0
if args.candidate_mode == 'quadratic':
s_o_list = [(i, j) for i in target_nghbrs for j in target_nghbrs]
elif args.candidate_mode == 'linear':
s_o_list = [(j, i) for i in target_nghbrs for j in [target_trip_ori[0], target_trip_ori[2]]] \
+ [(i, j) for i in target_nghbrs for j in [target_trip_ori[0], target_trip_ori[2]]]
else:
raise Exception('Wrong candidate_mode: '+args.candidate_mode)
for s, o in tqdm(s_o_list):
tp = entityid_to_nodetype[s]
if s!=o and s+'_'+o not in used_trip:
for r in range(n_rel):
if (tp, r) in filters["rhs"].keys() and filters["rhs"][(tp, r)][int(o)] == True:
# check_edge(s, r, o)
valid_trip += 1
nghbr_trip.append([s, str(r), o])
# logger.info('{0}_{1}_{2}'.format(s, str(r), o))
nghbr_trip_len.append(len(nghbr_trip))
print('Valid trip:', valid_trip)
if target_trip_ori[0]+'_'+target_trip_ori[2] not in used_trip:
nghbr_trip.append(target_trip_ori)
nghbr_trip = np.asarray(nghbr_trip)
print("Edge scoring ...")
influences = []
edge_losses = []
for train_trip in tqdm(nghbr_trip):
#model.train() #batch norm cannot be used here
train_trip = train_trip[None, :] # add batch dim
train_trip = torch.from_numpy(train_trip.astype('int64')).to(device)
#### L-train gradient ####
edge_loss = get_model_loss_without_softmax(train_trip, model, device).squeeze()
edge_losses.append(edge_loss.unsqueeze(0).detach())
model.zero_grad()
train_loss = get_model_loss(train_trip, model, device, args)
train_grads = autograd.grad(train_loss, param_influence)
train_grads = gather_flat_grad(train_grads)
influence = torch.dot(inverse_hvp, train_grads) #default dim=1
influences.append(influence.unsqueeze(0).detach())
edge_losses = torch.cat(edge_losses, dim = -1)
influences = torch.cat(influences, dim = -1)
edge_losses_log_prob = torch.log(F.softmax(-edge_losses, dim = -1))
influences_log_prob = torch.log(F.softmax(influences, dim = -1))
std_scale = torch.std(edge_losses_log_prob) / torch.std(influences_log_prob)
influences_log_prob = (influences_log_prob - influences_log_prob.mean()) * std_scale + edge_losses_log_prob.mean()
RRcord.append([target_trip.detach(), nghbr_trip, edge_losses, influences, edge_losses_log_prob, influences_log_prob])
inf_score_sorted, influences_sort = torch.sort(influences_log_prob, -1, descending=True)
edge_score_sorted, edge_sort = torch.sort(edge_losses_log_prob, -1, descending=True)
influences_sort = influences_sort.cpu().numpy()
edge_sort = edge_sort.cpu().numpy()
inf_score_sorted = inf_score_sorted.cpu().numpy()
edge_score_sorted = edge_score_sorted.cpu().numpy()
edge_losses = edge_losses.cpu().numpy()
p = np.where(influences_sort[0] == edge_sort)[0][0]
direct_add_rank_ratio += p / edge_sort.shape[0]
if logger:
logger.info('Top 8 inf_score: {}'.format(" ".join(map(str, list(inf_score_sorted[:8])))))
logger.info('Top 8 edge_score: {}'.format(" ".join(map(str, list(edge_score_sorted[:8])))))
nghbr_cos_log_prob = influences_log_prob.detach().cpu().numpy()
nghbr_LM_log_prob = edge_losses_log_prob.detach().cpu().numpy()
max_sim = nghbr_cos_log_prob[influences_sort[0]]
min_sim = nghbr_cos_log_prob[influences_sort[-1]]
max_LM = nghbr_LM_log_prob[edge_sort[0]]
min_LM = nghbr_LM_log_prob[edge_sort[-1]]
direct_score_0 = 0
direct_score_1 = 0
if target_trip_ori[0]+'_'+target_trip_ori[2] not in used_trip:
direct_score_0 = nghbr_cos_log_prob[-1]
direct_score_1 = nghbr_LM_log_prob[-1]
# bound = math.log(1 / nghbr_LM_log_prob.shape[0])
bound = 1 - args.reasonable_rate
edge_losses = (edge_losses - data_mean) / data_std
edge_losses_prob = 1 / ( 1 + np.exp(edge_losses - divide_bound) )
nghbr_LM_log_prob[edge_losses_prob < bound] = -(1e20)
final_score = nghbr_cos_log_prob + nghbr_LM_log_prob
index = np.argmax(final_score[:-1])
sort_index = [(i, final_score[i])for i in range(len(final_score) - 1)]
sort_index = sorted(sort_index, key=lambda x: x[1], reverse=True)
assert sort_index[0][0] == index
p = np.where(index == edge_sort)[0][0]
if logger:
logger.info('Bad edge ratio: {}'.format((edge_losses_prob < bound).mean()))
logger.info('Bounded edge\'s edge rank ratio: {}'.format(p / edge_sort.shape[0]))
real_add_rank_ratio += p / edge_sort.shape[0]
bad_ratio += (edge_losses_prob < bound).mean()
add_trip = nghbr_trip[index]
if (int(add_trip[0]) == int(-1)):
add_trip[0], add_trip[1], add_trip[2] = -1, -1, -1
print(final_score.shape, index, edge_losses_prob[index], bound)
raise Exception('??')
if logger:
logger.info('max_inf: {0:.8}, min_inf: {1:.8}, max_edge: {2:.8}, min_edge: {3:.8}'.format(max_sim, min_sim, max_LM, min_LM))
logger.info('Target trip: {0}_{1}_{2}. Attack trip: {3}_{4}_{5}.\n Influnce score: {6:.8}. Edge score: {7:.8}. Direct score: {8:.8} + {9:.8}'.format(target_trip_ori[0],target_trip_ori[1], target_trip_ori[2],
add_trip[0], add_trip[1], add_trip[2],
nghbr_cos_log_prob[index], nghbr_LM_log_prob[index],
direct_score_0, direct_score_1))
if (args.added_edge_num == '' or int(args.added_edge_num) == 1):
ret_trip.append(add_trip)
else:
edge_num = int(args.added_edge_num)
for i in range(edge_num):
ret_trip.append(nghbr_trip[sort_index[i][0]])
score_record.append((nghbr_cos_log_prob, nghbr_LM_log_prob))
if not load_Record and cache_intermidiate:
with open(intermidiate_path, 'wb') as fl:
dill.dump(RRcord, fl)
direct_add_rank_ratio = direct_add_rank_ratio / target_data.shape[0]
real_add_rank_ratio = real_add_rank_ratio / target_data.shape[0]
bad_ratio = bad_ratio / target_data.shape[0]
if logger:
logger.info('Mean direct ratio: {}. Mean real ratio: {}. Mean bad ratio: {}'.format(direct_add_rank_ratio, real_add_rank_ratio, bad_ratio))
return ret_trip, score_record
def calculate_edge_bound(data, model, device, n_ent):
tmp = np.random.choice(a = data.shape[0], size = data.shape[0] // 10, replace=False)
existed_data= data[tmp, :]
print('calculating edge bound ...')
print(existed_data.shape)
existed_edge = set()
for src_trip in existed_data:
existed_edge.add('_'.join(list(src_trip)))
not_existed = []
for s, r, o in existed_data:
if np.random.randint(0, n_ent) % 2 == 0:
while True:
oo = np.random.randint(0, n_ent)
if '_'.join([s, r, str(oo)]) not in existed_edge:
not_existed.append([s, r, str(oo)])
break
else:
while True:
ss = np.random.randint(0, n_ent)
if '_'.join([str(ss), r, o]) not in existed_edge:
not_existed.append([str(ss), r, o])
break
existed_data = np.array(existed_data)
not_existed = np.array(not_existed)
existed_data = torch.from_numpy(existed_data.astype('int64')).to(device)
not_existed = torch.from_numpy(not_existed.astype('int64')).to(device)
loss_existed = get_model_loss_without_softmax(existed_data, model).cpu().numpy()
loss_not_existed = get_model_loss_without_softmax(not_existed, model).cpu().numpy()
tot_loss = np.hstack((loss_existed, loss_not_existed))
tot_mean, tot_std = np.mean(tot_loss), np.std(tot_loss)
loss_existed = (loss_existed - tot_mean) / tot_std
loss_not_existed = (loss_not_existed - tot_mean) / tot_std
print('Tot mean: {}, Tot std: {}'.format(tot_mean, tot_std))
# print(np.mean(loss_existed), np.std(loss_existed), np.max(loss_existed))
# print(np.mean(loss_not_existed), np.std(loss_not_existed), np.min(loss_not_existed))
l_mean, l_std = np.mean(loss_existed), np.std(loss_existed)
r_mean, r_std = np.mean(loss_not_existed), np.std(loss_not_existed)
A = -1/(l_std**2) + 1/(r_std**2)
B = 2 * (-r_mean/(r_std**2) + l_mean/(l_std**2))
C = (r_mean**2)/(r_std**2)-(l_mean**2)/(l_std**2) + np.log((r_std**2)/(l_std**2))
delta = B**2 - 4*A*C
x_1 = ( -B + math.sqrt(delta) ) / (2*A)
x_2 = ( -B - math.sqrt(delta) ) / (2*A)
x = None
if (x_1 > l_mean and x_1 < r_mean):
x = x_1
if (x_2 > l_mean and x_2 < r_mean):
x = x_2
if not x:
raise Exception('Bad model!!!!')
TP = (loss_existed < x).mean()
TN = (loss_not_existed > x).mean()
FP = (loss_not_existed < x).mean()
FN = (loss_existed > x).mean()
print('X:{}, TP:{}, TN:{}, FP:{}, FN{}'.format(x, TP, TN, FP, FN))
sig_existed = 1 / ( 1 + np.exp(loss_existed- x) ) # negtive important
sig_not_existed = 1 / ( 1 + np.exp(loss_not_existed - x) )
print('Positive mean score:', sig_existed.mean(),'Negetive mean score:', sig_not_existed.mean())
return x, tot_mean, tot_std
#%%
if __name__ == '__main__':
parser = utils.get_argument_parser()
parser = utils.add_attack_parameters(parser)
args = parser.parse_args()
args = utils.set_hyperparams(args)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args.device = device
args.device1 = device
if torch.cuda.device_count() >= 2:
args.device = "cuda:0"
args.device1 = "cuda:1"
utils.seed_all(args.seed)
np.set_printoptions(precision=5)
cudnn.benchmark = False
model_name = '{0}_{1}_{2}_{3}_{4}'.format(args.model, args.embedding_dim, args.input_drop, args.hidden_drop, args.feat_drop)
model_path = 'saved_models/{0}_{1}.model'.format(args.data, model_name)
data_path = os.path.join('processed_data', args.data)
target_path = os.path.join(data_path, 'DD_target_{0}_{1}_{2}_{3}_{4}_{5}.txt'.format(args.model, args.data, args.target_split, args.target_size, 'exists:'+str(args.target_existed), args.attack_goal))
lissa_path = 'lissa/{0}_{1}_{2}'.format(args.model,
args.data,
args.target_size)
intermidiate_path = 'intermidiate/{0}_{1}_{2}_{3}_{4}_{5}_{6}'.format(args.model,
args.target_split,
args.target_size,
'exists:'+str(args.target_existed),
args.neighbor_num,
args.candidate_mode,
args.attack_goal)
log_path = 'logs/attack_logs/cos_{0}_{1}_{2}_{3}_{4}_{5}_{6}_{7}'.format(args.model,
args.target_split,
args.target_size,
'exists:'+str(args.target_existed),
args.neighbor_num,
args.candidate_mode,
args.attack_goal,
str(args.reasonable_rate))
print(log_path)
attack_path = os.path.join('attack_results', args.data, 'cos_{0}_{1}_{2}_{3}_{4}_{5}_{6}_{7}{8}.txt'.format(args.model,
args.target_split,
args.target_size,
'exists:'+str(args.target_existed),
args.neighbor_num,
args.candidate_mode,
args.attack_goal,
str(args.reasonable_rate),
str(args.added_edge_num)))
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO,
filename = log_path
)
logger = logging.getLogger(__name__)
logger.info(vars(args))
#%%
n_ent, n_rel, ent_to_id, rel_to_id = utils.generate_dicts(data_path)
data = utils.load_data(os.path.join(data_path, 'all.txt'))
with open(os.path.join(data_path, 'filter.pickle'), 'rb') as fl:
filters = pkl.load(fl)
with open(os.path.join(data_path, 'entityid_to_nodetype.json'), 'r') as fl:
entityid_to_nodetype = json.load(fl)
with open(os.path.join(data_path, 'edge_nghbrs.pickle'), 'rb') as fl:
edge_nghbrs = pkl.load(fl)
with open(os.path.join(data_path, 'disease_meshid.pickle'), 'rb') as fl:
disease_meshid = pkl.load(fl)
with open(os.path.join(data_path, 'entities_dict.json'), 'r') as fl:
entity_to_id = json.load(fl)
with open(Parameters.GNBRfile+'entity_raw_name', 'rb') as fl:
entity_raw_name = pkl.load(fl)
#%%
init_mask = np.asarray([0] * n_ent).astype('int64')
init_mask = (init_mask == 1)
for k, v in filters.items():
for kk, vv in v.items():
tmp = init_mask.copy()
tmp[np.asarray(vv)] = True
t = torch.ByteTensor(tmp).to(args.device)
filters[k][kk] = t
#%%
model = utils.load_model(model_path, args, n_ent, n_rel, args.device)
divide_bound, data_mean, data_std = calculate_edge_bound(data, model, args.device, n_ent)
# index = torch.LongTensor([0, 1]).to(device)
# print(model.emb_rel(index)[:, :32])
# print(model.emb_e(index)[:, :32])
# raise Exception
#%%
target_data = utils.load_data(target_path)
if args.attack_goal == 'single':
neighbors = generate_nghbrs(target_data, edge_nghbrs, args)
elif args.attack_goal == 'global':
s_set = set()
for s, r, o in target_data:
s_set.add(s)
target_data = list(s_set)
target_data.sort()
target_data = np.array(target_data, dtype=str)
neighbors = []
for i in list(range(n_ent)):
tp = entityid_to_nodetype[str(i)]
# r = torch.LongTensor([[10]]).to(device)
if tp == 'gene':
neighbors.append(str(i))
target_disease = []
tid = 1
bound = 50
while True:
meshid = disease_meshid[tid][0]
fre = disease_meshid[tid][1]
if len(entity_raw_name[meshid]) > 4:
target_disease.append(entity_to_id[meshid])
bound -= 1
if bound == 0:
break
tid += 1
else:
raise Exception('Wrong attack_goal: '+args.attack_goal)
param_optimizer = list(model.named_parameters())
param_influence = []
for n,p in param_optimizer:
param_influence.append(p)
if args.attack_goal == 'single':
len_list = []
for v in neighbors.values():
len_list.append(len(v))
mean_len = np.mean(len_list)
else:
mean_len = len(neighbors)
print('Mean length of neighbors:', mean_len)
logger.info("Mean length of neighbors: {0}".format(mean_len))
# GPT_LM = LMscore_calculator(data_path, args)
lissa_num_batches = math.ceil(data.shape[0]/args.lissa_batch_size)
logger.info('-------- Lissa Params for IHVP --------')
logger.info('Damping: {0}'.format(args.damping))
logger.info('Lissa_repeat: {0}'.format(args.lissa_repeat))
logger.info('Lissa_depth: {0}'.format(args.lissa_depth))
logger.info('Scale: {0}'.format(args.scale))
logger.info('Lissa batch size: {0}'.format(args.lissa_batch_size))
logger.info('Lissa num bacthes: {0}'.format(lissa_num_batches))
score_path = os.path.join('attack_results', args.data, 'score_cos_{0}_{1}_{2}_{3}_{4}_{5}_{6}_{7}{8}.txt'.format(args.model,
args.target_split,
args.target_size,
'exists:'+str(args.target_existed),
args.neighbor_num,
args.candidate_mode,
args.attack_goal,
str(args.reasonable_rate),
str(args.added_edge_num)))
if args.attack_goal == 'single':
attack_trip, score_record = addition_attack(param_influence, args.device, n_rel, data, target_data, neighbors, model, filters, entityid_to_nodetype, args.attack_batch_size, args, load_Record = args.load_existed, divide_bound = divide_bound, data_mean = data_mean, data_std = data_std)
else:
# lissa = before_global_attack(args.device, n_rel, data, target_data, neighbors, model, filters, entityid_to_nodetype, args.attack_batch_size, args, lissa_path, target_disease)
attack_trip, score_record = global_addtion_attack(args.device, n_rel, data, target_data, neighbors, model, filters, entityid_to_nodetype, args.attack_batch_size, args, None, target_disease)
utils.save_data(attack_path, attack_trip)
logger.info("Attack triples are saved in " + attack_path)
with open(score_path, 'wb') as fl:
pkl.dump(score_record, fl) |