Spaces:
Running
Running
File size: 21,613 Bytes
ac7c391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
import torch
import numpy as np
from torch.autograd import Variable
from sklearn import metrics
import datetime
from typing import Dict, Tuple, List
import logging
import os
import utils
import pickle as pkl
import json
from tqdm import tqdm
import torch.backends.cudnn as cudnn
import sys
sys.path.append("..")
import Parameters
logger = logging.getLogger(__name__)
def get_model_loss_without_softmax(batch, model, device=None):
with torch.no_grad():
s,r,o = batch[:,0], batch[:,1], batch[:,2]
emb_s = model.emb_e(s).squeeze(dim=1)
emb_r = model.emb_rel(r).squeeze(dim=1)
pred = model.forward(emb_s, emb_r)
return -pred[range(o.shape[0]), o]
def check(trip, model, reasonable_rate, device, data_mean = -4.008113861083984, data_std = 5.153779983520508, divide_bound = 0.05440050354114886):
if args.model == 'distmult':
pass
elif args.model == 'conve':
data_mean = 13.890259742
data_std = 12.396190643
divide_bound = -0.1986345871
else:
raise Exception('Wrong model!!')
trip = np.array(trip)
train_trip = trip[None, :]
train_trip = torch.from_numpy(train_trip.astype('int64')).to(device)
edge_loss = get_model_loss_without_softmax(train_trip, model, device).squeeze().item()
bound = 1 - reasonable_rate
edge_loss = (edge_loss - data_mean) / data_std
edge_loss_prob = 1 / ( 1 + np.exp(edge_loss - divide_bound))
return edge_loss_prob > bound
def get_ranking(model, queries,
valid_filters:Dict[str, Dict[Tuple[str, int], torch.Tensor]],
device, batch_size, entityid_to_nodetype, exists_edge):
"""
Ranking for target generation.
"""
ranks = []
total_nums = []
b_begin = 0
for b_begin in range(0, len(queries), 1):
b_queries = queries[b_begin : b_begin+1]
s,r,o = b_queries[:,0], b_queries[:,1], b_queries[:,2]
r_rev = r
lhs_score = model.score_or(o, r_rev, sigmoid=False) #this gives scores not probabilities
# print(b_queries.shape)
for i, query in enumerate(b_queries):
if not args.target_existed:
tp1 = entityid_to_nodetype[str(query[0].item())]
tp2 = entityid_to_nodetype[str(query[2].item())]
filter = valid_filters['lhs'][(tp2, query[1].item())].clone()
filter[exists_edge['lhs'][str(query[2].item())]] = False
filter = (filter == False)
else:
tp1 = entityid_to_nodetype[str(query[0].item())]
tp2 = entityid_to_nodetype[str(query[2].item())]
filter = valid_filters['lhs'][(tp2, query[1].item())]
filter = (filter == False)
# if (str(query[2].item())) == '16566':
# print('16566', filter.sum(), valid_filters['lhs'][(tp2, query[1].item())].sum(), tp2, query[1].item())
# raise Exception('??')
score = lhs_score
# target_value = rhs_score[i, query[0].item()].item()
# zero all known cases (this are not interesting)
# this corresponds to the filtered setting
score[i][filter] = 1e6
total_nums.append(n_ent - filter.sum().item())
# write base the saved values
# if b_begin < len(queries) // 2:
# score[i][query[2].item()] = target_value
# else:
# score[i][query[0].item()] = target_value
# sort and rank
min_values, sort_v = torch.sort(score, dim=1, descending=False) #low scores get low number ranks
sort_v = sort_v.cpu().numpy()
for i, query in enumerate(b_queries):
# find the rank of the target entities
rank = np.where(sort_v[i]==query[0].item())[0][0]
# rank+1, since the lowest rank is rank 1 not rank 0
ranks.append(rank)
#logger.info('Ranking done for all queries')
return ranks, total_nums
def evaluation(model, queries,
valid_filters:Dict[str, Dict[Tuple[str, int], torch.Tensor]],
device, batch_size, entityid_to_nodetype, exists_edge, eval_type = '', attack_data = None, ori_ranks = None, ori_totals = None):
#get ranking
ranks, total_nums = get_ranking(model, queries, valid_filters, device, batch_size, entityid_to_nodetype, exists_edge)
ranks, total_nums = np.array(ranks), np.array(total_nums)
# print(ranks)
# print(total_nums)
# print(ranks)
# print(total_nums)
ranks = total_nums - ranks
if (attack_data is not None):
for i, tri in enumerate(attack_data):
if args.mode == '':
if args.added_edge_num == '' or int(args.added_edge_num) == 1:
if int(tri[0]) == -1:
ranks[i] = ori_ranks[i]
total_nums[i] = ori_totals[i]
else:
if int(tri[0][0]) == -1:
ranks[i] = ori_ranks[i]
total_nums[i] = ori_totals[i]
else:
if len(tri) == 0:
ranks[i] = ori_ranks[i]
total_nums[i] = ori_totals[i]
mean = (ranks / total_nums).mean()
std = (ranks / total_nums).std()
#final logging
hits_at = np.arange(1,11)
hits_at_both = list(map(lambda x: np.mean((ranks <= x), dtype=np.float64).item(),
hits_at))
mr = np.mean(ranks, dtype=np.float64).item()
mrr = np.mean(1. / ranks, dtype=np.float64).item()
logger.info('')
logger.info('-'*50)
# logger.info(split+'_'+save_name)
logger.info('')
if eval_type:
logger.info(eval_type)
else:
logger.info('after attck')
for i in hits_at:
logger.info('Hits @{0}: {1}'.format(i, hits_at_both[i-1]))
logger.info('Mean rank: {0}'.format( mr))
logger.info('Mean reciprocal rank lhs: {0}'.format(mrr))
logger.info('Mean proportion: {0}'.format(mean))
logger.info('Std proportion: {0}'.format(std))
logger.info('Mean candidate num: {0}'.format(np.mean(total_nums)))
# with open(os.path.join('results', split + '_' + save_name + '.txt'), 'a') as text_file:
# text_file.write('Epoch: {0}\n'.format(epoch))
# text_file.write('Lhs denotes ranking by subject corruptions \n')
# text_file.write('Rhs denotes ranking by object corruptions \n')
# for i in hits_at:
# text_file.write('Hits left @{0}: {1}\n'.format(i, hits_at_lhs[i-1]))
# text_file.write('Hits right @{0}: {1}\n'.format(i, hits_at_rhs[i-1]))
# text_file.write('Hits @{0}: {1}\n'.format(i, np.mean([hits_at_lhs[i-1],hits_at_rhs[i-1]]).item()))
# text_file.write('Mean rank lhs: {0}\n'.format( mr_lhs))
# text_file.write('Mean rank rhs: {0}\n'.format(mr_rhs))
# text_file.write('Mean rank: {0}\n'.format( np.mean([mr_lhs, mr_rhs])))
# text_file.write('MRR lhs: {0}\n'.format( mrr_lhs))
# text_file.write('MRR rhs: {0}\n'.format(mrr_rhs))
# text_file.write('MRR: {0}\n'.format(np.mean([mrr_rhs, mrr_lhs])))
# text_file.write('-------------------------------------------------\n')
results = {}
for i in hits_at:
results['hits @{}'.format(i)] = hits_at_both[i-1]
results['mrr'] = mrr
results['mr'] = mr
results['proportion'] = mean
results['std'] = std
return results, list(ranks), list(total_nums)
parser = utils.get_argument_parser()
parser = utils.add_attack_parameters(parser)
parser = utils.add_eval_parameters(parser)
args = parser.parse_args()
args = utils.set_hyperparams(args)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
utils.seed_all(args.seed)
np.set_printoptions(precision=5)
cudnn.benchmark = False
data_path = os.path.join('processed_data', args.data)
target_path = os.path.join(data_path, 'DD_target_{0}_{1}_{2}_{3}_{4}_{5}.txt'.format(args.model, args.data, args.target_split, args.target_size, 'exists:'+str(args.target_existed), args.attack_goal))
log_path = 'logs/evaluation_logs/cos_{0}_{1}_{2}_{3}_{4}_{5}_{6}_{7}{8}'.format(args.model,
args.target_split,
args.target_size,
'exists:'+str(args.target_existed),
args.neighbor_num,
args.candidate_mode,
args.attack_goal,
str(args.reasonable_rate),
args.mode)
record_path = 'eval_record/{0}_{1}_{2}_{3}_{4}_{5}_{6}_{7}{8}{9}{10}'.format(args.model,
args.target_split,
args.target_size,
'exists:'+str(args.target_existed),
args.neighbor_num,
args.candidate_mode,
args.attack_goal,
str(args.reasonable_rate),
args.mode,
str(args.added_edge_num),
args.mask_ratio)
init_record_path = 'eval_record/{0}_{1}_{2}_{3}_{4}_{5}_{6}_{7}{8}'.format(args.model,
args.target_split,
args.target_size,
'exists:'+str(args.target_existed),
args.neighbor_num,
args.candidate_mode,
args.attack_goal,
str(args.reasonable_rate),
'init')
if args.seperate:
record_path += '_seperate'
log_path += '_seperate'
else:
record_path += '_batch'
if args.direct:
log_path += '_direct'
record_path += '_direct'
else:
log_path += '_nodirect'
record_path += '_nodirect'
dis_turbrbed_path_pre = os.path.join(data_path, 'evaluation')
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO,
filename = log_path
)
logger = logging.getLogger(__name__)
logger.info(vars(args))
n_ent, n_rel, ent_to_id, rel_to_id = utils.generate_dicts(data_path)
model_name = '{0}_{1}_{2}_{3}_{4}'.format(args.model, args.embedding_dim, args.input_drop, args.hidden_drop, args.feat_drop)
model_path = 'saved_models/{0}_{1}.model'.format(args.data, model_name)
model = utils.load_model(model_path, args, n_ent, n_rel, device)
ori_data = utils.load_data(os.path.join(data_path, 'all.txt'))
target_data = utils.load_data(target_path)
index = range(len(target_data))
index = np.random.permutation(index)
target_data = target_data[index]
if args.direct:
assert args.attack_goal == 'single'
raise Exception('This option is abandoned in this version .')
# disturbed_data = list(ori_data) + list(target_data)
else:
attack_path = os.path.join('attack_results', args.data, 'cos_{0}_{1}_{2}_{3}_{4}_{5}_{6}_{7}{8}{9}{10}.txt'.format(args.model,
args.target_split,
args.target_size,
'exists:'+str(args.target_existed),
args.neighbor_num,
args.candidate_mode,
args.attack_goal,
str(args.reasonable_rate),
args.mode,
str(args.added_edge_num),
args.mask_ratio))
if args.mode == '':
attack_data = utils.load_data(attack_path, drop=False)
if not(args.added_edge_num == '' or int(args.added_edge_num) == 1):
assert int(args.added_edge_num) * len(target_data) == len(attack_data)
attack_data = attack_data.reshape((len(target_data), int(args.added_edge_num), 3))
attack_data = attack_data[index]
else:
assert len(target_data) == len(attack_data)
attack_data = attack_data[index]
# if not args.seperate:
# disturbed_data = list(ori_data) + list(attack_data)
else:
with open(attack_path, 'rb') as fl:
attack_data = pkl.load(fl)
tmp_attack_data = []
for vv in attack_data:
a_attack = []
for v in vv:
if check(v, model, args.reasonable_rate, device):
a_attack.append(v)
tmp_attack_data.append(a_attack)
attack_data = tmp_attack_data
attack_data = [attack_data[i] for i in index]
# if not args.seperate:
# disturbed_data = list(ori_data)
# if args.mode == '':
# for aa in list(attack_data):
# if int(aa[0]) != -1:
# disturbed_data.append(aa)
# else:
# for vv in attack_data:
# for v in vv:
# disturbed_data.append(v)
with open(os.path.join(data_path, 'filter.pickle'), 'rb') as fl:
valid_filters = pkl.load(fl)
with open(os.path.join(data_path, 'entityid_to_nodetype.json'), 'r') as fl:
entityid_to_nodetype = json.load(fl)
with open(Parameters.GNBRfile+'entity_raw_name', 'rb') as fl:
entity_raw_name = pkl.load(fl)
with open(os.path.join(data_path, 'disease_meshid.pickle'), 'rb') as fl:
disease_meshid = pkl.load(fl)
with open(os.path.join(data_path, 'entities_dict.json'), 'r') as fl:
entity_to_id = json.load(fl)
if args.attack_goal == 'global':
raise Exception('Please refer to pagerank method in global setting.')
# target_disease = []
# tid = 1
# bound = 50
# while True:
# meshid = disease_meshid[tid][0]
# fre = disease_meshid[tid][1]
# if len(entity_raw_name[meshid]) > 4:
# target_disease.append(entity_to_id[meshid])
# bound -= 1
# if bound == 0:
# break
# tid += 1
# s_set = set()
# for s, r, o in target_data:
# s_set.add(s)
# target_data = list(s_set)
# target_data.sort()
# target_list = []
# for s in target_data:
# for o in target_disease:
# target_list.append([str(s), str(10), str(o)])
# target_data = np.array(target_list, dtype = str)
init_mask = np.asarray([0] * n_ent).astype('int64')
init_mask = (init_mask == 1)
for k, v in valid_filters.items():
for kk, vv in v.items():
tmp = init_mask.copy()
tmp[np.asarray(vv)] = True
t = torch.ByteTensor(tmp).to(device)
valid_filters[k][kk] = t
# print('what??', valid_filters['lhs'][('disease', 10)].sum())
exists_edge = {'lhs':{}, 'rhs':{}}
for s, r, o in ori_data:
if s not in exists_edge['rhs'].keys():
exists_edge['rhs'][s] = []
if o not in exists_edge['lhs'].keys():
exists_edge['lhs'][o] = []
exists_edge['rhs'][s].append(int(o))
exists_edge['lhs'][o].append(int(s))
target_data = torch.from_numpy(target_data.astype('int64')).to(device)
# print(target_data[:5, :])
ori_results, ori_ranks, ori_totals = evaluation(model, target_data, valid_filters, device, args.test_batch_size, entityid_to_nodetype, exists_edge, 'original')
print('Original:', ori_results)
with open(init_record_path, 'wb') as fl:
pkl.dump([ori_results, ori_ranks, ori_totals], fl)
# raise Exception('Check Original Rank!!!')
thread_name = args.model+'_'+args.target_split+'_'+args.attack_goal+'_'+str(args.reasonable_rate)+str(args.added_edge_num)+str(args.mask_ratio)
if args.direct:
thread_name += '_direct'
else:
thread_name += '_nodirect'
if args.seperate:
thread_name += '_seperate'
else:
thread_name += '_batch'
thread_name += args.mode
disturbed_data_path = os.path.join(dis_turbrbed_path_pre, 'all_{}.txt'.format(thread_name))
if args.seperate:
# assert len(attack_data) * len(target_disease) == len(target_data)
assert len(attack_data) == len(target_data)
# final_result = None
Ranks = []
Totals = []
print('Training model {}...'.format(thread_name))
for i in tqdm(range(len(attack_data))):
attack_trip = attack_data[i]
if args.mode == '':
attack_trip = [attack_trip]
# target = target_data[i*len(target_disease) : (i+1)*len(target_disease)]
target = target_data[i: i+1, :]
if len(attack_trip) > 0 and int(attack_trip[0][0]) != -1:
disturbed_data = list(ori_data) + attack_trip
disturbed_data = np.array(disturbed_data)
utils.save_data(disturbed_data_path, disturbed_data)
cmd = 'CUDA_VISIBLE_DEVICES={} python main_multiprocess.py --data {} --model {} --thread-name {}'.format(args.cuda_name,args.data, args.model, thread_name)
os.system(cmd)
model_name = '{0}_{1}_{2}_{3}_{4}_{5}'.format(args.model, args.embedding_dim, args.input_drop, args.hidden_drop, args.feat_drop, thread_name)
model_path = 'saved_models/evaluation/{0}_{1}.model'.format(args.data, model_name)
model = utils.load_model(model_path, args, n_ent, n_rel, device)
a_results, a_ranks, a_total_nums = evaluation(model, target, valid_filters, device, args.test_batch_size, entityid_to_nodetype, exists_edge)
assert len(a_ranks) == 1
if not final_result:
final_result = a_results
else:
for k in final_result.keys():
final_result[k] += a_results[k]
Ranks += a_ranks
Totals += a_total_nums
else:
Ranks += [ori_ranks[i]]
Totals += [ori_totals[i]]
final_result['proportion'] += ori_ranks[i] / ori_totals[i]
for k in final_result.keys():
final_result[k] /= attack_data.shape[0]
print('Final !!!')
print(final_result)
logger.info('Final !!!!')
for k, v in final_result.items():
logger.info('{} : {}'.format(k, v))
tmp = np.array(Ranks) / np.array(Totals)
print('Std:', np.std(tmp))
with open(record_path, 'wb') as fl:
pkl.dump([final_result, Ranks, Totals], fl)
else:
assert len(target_data) == len(attack_data)
print('Attack shape:' , len(attack_data))
Results = []
Ranks = []
Totals = []
for l in range(0, len(target_data), 50):
r = min(l+50, len(target_data))
t_target_data = target_data[l:r]
t_attack_data = attack_data[l:r]
t_ori_ranks = ori_ranks[l:r]
t_ori_totals = ori_totals[l:r]
if args.mode == '':
if not(args.added_edge_num == '' or int(args.added_edge_num) == 1):
tt_attack_data = []
for vv in t_attack_data:
tt_attack_data += list(vv)
t_attack_data = tt_attack_data
else:
assert args.mode == 'sentence' or args.mode == 'bioBART'
tt_attack_data = []
for vv in t_attack_data:
tt_attack_data += vv
t_attack_data = tt_attack_data
disturbed_data = list(ori_data) + list(t_attack_data)
utils.save_data(disturbed_data_path, disturbed_data)
cmd = 'CUDA_VISIBLE_DEVICES={} python main_multiprocess.py --data {} --model {} --thread-name {}'.format(args.cuda_name,args.data, args.model, thread_name)
print('Training model {}...'.format(thread_name))
os.system(cmd)
model_name = '{0}_{1}_{2}_{3}_{4}_{5}'.format(args.model, args.embedding_dim, args.input_drop, args.hidden_drop, args.feat_drop, thread_name)
model_path = 'saved_models/evaluation/{0}_{1}.model'.format(args.data, model_name)
model = utils.load_model(model_path, args, n_ent, n_rel, device)
a_results, a_ranks, a_totals = evaluation(model, t_target_data, valid_filters, device, args.test_batch_size, entityid_to_nodetype, exists_edge, attack_data = attack_data[l:r], ori_ranks = t_ori_ranks, ori_totals = t_ori_totals)
print(f'************Current l: {l}\n', a_results)
assert len(a_ranks) == t_target_data.shape[0]
Results += [a_results]
Ranks += list(a_ranks)
Totals += list(a_totals)
with open(record_path, 'wb') as fl:
pkl.dump([Results, Ranks, Totals, index], fl) |