File size: 18,542 Bytes
2d06d0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import torch
from torch.nn import functional as F, Parameter
from torch.autograd import Variable
from torch.nn.init import xavier_normal_, xavier_uniform_
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence

class Distmult(torch.nn.Module):
    def __init__(self, args, num_entities, num_relations):
        super(Distmult, self).__init__()
        
        if args.max_norm:
            self.emb_e = torch.nn.Embedding(num_entities, args.embedding_dim, max_norm=1.0)
            self.emb_rel = torch.nn.Embedding(num_relations, args.embedding_dim)
        else:
            self.emb_e = torch.nn.Embedding(num_entities, args.embedding_dim, padding_idx=None)
            self.emb_rel = torch.nn.Embedding(num_relations, args.embedding_dim, padding_idx=None)
        
        self.inp_drop = torch.nn.Dropout(args.input_drop)
        self.loss = torch.nn.CrossEntropyLoss()
        
        self.init()
    
    def init(self):
        xavier_normal_(self.emb_e.weight)
        xavier_normal_(self.emb_rel.weight)
    
    def score_sr(self, sub, rel, sigmoid = False):
        sub_emb = self.emb_e(sub).squeeze(dim=1)
        rel_emb = self.emb_rel(rel).squeeze(dim=1)
            
        #sub_emb = self.inp_drop(sub_emb)
        #rel_emb = self.inp_drop(rel_emb) 
        
        pred = torch.mm(sub_emb*rel_emb, self.emb_e.weight.transpose(1,0))
        if sigmoid:
            pred = torch.sigmoid(pred) 
        return pred
    
    def score_or(self, obj, rel, sigmoid = False):
        obj_emb = self.emb_e(obj).squeeze(dim=1)
        rel_emb = self.emb_rel(rel).squeeze(dim=1)
        
        #obj_emb = self.inp_drop(obj_emb)
        #rel_emb = self.inp_drop(rel_emb) 
        
        pred = torch.mm(obj_emb*rel_emb, self.emb_e.weight.transpose(1,0))
        if sigmoid:
            pred = torch.sigmoid(pred)
        return pred
    
    
    def forward(self, sub_emb, rel_emb, mode='rhs', sigmoid=False):
        '''
        When mode is 'rhs' we expect (s,r); for 'lhs', we expect (o,r)
        For distmult, computations for both modes are equivalent, so we do not need if-else block
        '''
        sub_emb = self.inp_drop(sub_emb)
        rel_emb = self.inp_drop(rel_emb) 
        
        pred = torch.mm(sub_emb*rel_emb, self.emb_e.weight.transpose(1,0))
            
        if sigmoid:
            pred = torch.sigmoid(pred)

        return pred
    
    def score_triples(self, sub, rel, obj, sigmoid=False):
        '''
        Inputs - subject, relation, object
        Return - score
        '''
        sub_emb = self.emb_e(sub).squeeze(dim=1)
        rel_emb = self.emb_rel(rel).squeeze(dim=1)
        obj_emb = self.emb_e(obj).squeeze(dim=1)
        
        pred = torch.sum(sub_emb*rel_emb*obj_emb, dim=-1)
        
        if sigmoid:
            pred = torch.sigmoid(pred)

        return pred
    
    def score_emb(self, emb_s, emb_r, emb_o, sigmoid=False):
        '''
        Inputs - embeddings of subject, relation, object
        Return - score
        '''
        pred = torch.sum(emb_s*emb_r*emb_o, dim=-1)
        
        if sigmoid:
            pred = torch.sigmoid(pred)

        return pred
    
    def score_triples_vec(self, sub, rel, obj, sigmoid=False):
        '''
        Inputs - subject, relation, object
        Return - a vector score for the triple instead of reducing over the embedding dimension
        '''
        sub_emb = self.emb_e(sub).squeeze(dim=1)
        rel_emb = self.emb_rel(rel).squeeze(dim=1)
        obj_emb = self.emb_e(obj).squeeze(dim=1)
        
        pred = sub_emb*rel_emb*obj_emb
        
        if sigmoid:
            pred = torch.sigmoid(pred)

        return pred
    
class Complex(torch.nn.Module):
    def __init__(self, args, num_entities, num_relations):
        super(Complex, self).__init__()
        
        if args.max_norm:
            self.emb_e = torch.nn.Embedding(num_entities, 2*args.embedding_dim, max_norm=1.0)
            self.emb_rel = torch.nn.Embedding(num_relations, 2*args.embedding_dim)
        else:
            self.emb_e = torch.nn.Embedding(num_entities, 2*args.embedding_dim, padding_idx=None)
            self.emb_rel = torch.nn.Embedding(num_relations, 2*args.embedding_dim, padding_idx=None)
        
        self.inp_drop = torch.nn.Dropout(args.input_drop)
        self.loss = torch.nn.CrossEntropyLoss()
        
        self.init()
    
    def init(self):
        xavier_normal_(self.emb_e.weight)
        xavier_normal_(self.emb_rel.weight)
    
    def score_sr(self, sub, rel, sigmoid = False):
        sub_emb = self.emb_e(sub).squeeze(dim=1)
        rel_emb = self.emb_rel(rel).squeeze(dim=1)
            
        s_real, s_img = torch.chunk(rel_emb, 2, dim=-1)
        rel_real, rel_img = torch.chunk(sub_emb, 2, dim=-1)
        emb_e_real, emb_e_img = torch.chunk(self.emb_e.weight, 2, dim=-1)
        
        realo_realreal = s_real*rel_real
        realo_imgimg = s_img*rel_img
        realo = realo_realreal - realo_imgimg
        real = torch.mm(realo, emb_e_real.transpose(1,0))
        
        imgo_realimg = s_real*rel_img
        imgo_imgreal = s_img*rel_real
        imgo = imgo_realimg + imgo_imgreal
        img = torch.mm(imgo, emb_e_img.transpose(1,0))
        
        pred = real + img
            
        if sigmoid:
            pred = torch.sigmoid(pred) 
        return pred
    
    
    def score_or(self, obj, rel, sigmoid = False):
        obj_emb = self.emb_e(obj).squeeze(dim=1)
        rel_emb = self.emb_rel(rel).squeeze(dim=1)
        
        rel_real, rel_img = torch.chunk(rel_emb, 2, dim=-1)
        o_real, o_img = torch.chunk(obj_emb, 2, dim=-1)
        emb_e_real, emb_e_img = torch.chunk(self.emb_e.weight, 2, dim=-1)

        #rel_real = self.inp_drop(rel_real)
        #rel_img = self.inp_drop(rel_img)
        #o_real = self.inp_drop(o_real)
        #o_img = self.inp_drop(o_img)

        # complex space bilinear product (equivalent to HolE)
#         realrealreal = torch.mm(rel_real*o_real, emb_e_real.transpose(1,0))
#         realimgimg = torch.mm(rel_img*o_img, emb_e_real.transpose(1,0))
#         imgrealimg = torch.mm(rel_real*o_img, emb_e_img.transpose(1,0))
#         imgimgreal = torch.mm(rel_img*o_real, emb_e_img.transpose(1,0))
#         pred = realrealreal + realimgimg + imgrealimg - imgimgreal
        
        reals_realreal = rel_real*o_real
        reals_imgimg = rel_img*o_img
        reals = reals_realreal + reals_imgimg
        real = torch.mm(reals, emb_e_real.transpose(1,0))
        
        imgs_realimg = rel_real*o_img
        imgs_imgreal = rel_img*o_real
        imgs = imgs_realimg - imgs_imgreal
        img = torch.mm(imgs, emb_e_img.transpose(1,0))
        
        pred = real + img
        
        if sigmoid:
            pred = torch.sigmoid(pred)
        return pred
    
    
    def forward(self, sub_emb, rel_emb, mode='rhs', sigmoid=False):
        '''
        When mode is 'rhs' we expect (s,r); for 'lhs', we expect (o,r)
        
        '''
        if mode == 'lhs':
            rel_real, rel_img = torch.chunk(rel_emb, 2, dim=-1)
            o_real, o_img = torch.chunk(sub_emb, 2, dim=-1)
            emb_e_real, emb_e_img = torch.chunk(self.emb_e.weight, 2, dim=-1)
            
            rel_real = self.inp_drop(rel_real)
            rel_img = self.inp_drop(rel_img)
            o_real = self.inp_drop(o_real)
            o_img = self.inp_drop(o_img)
        
            reals_realreal = rel_real*o_real
            reals_imgimg = rel_img*o_img
            reals = reals_realreal + reals_imgimg
            real = torch.mm(reals, emb_e_real.transpose(1,0))

            imgs_realimg = rel_real*o_img
            imgs_imgreal = rel_img*o_real
            imgs = imgs_realimg - imgs_imgreal
            img = torch.mm(imgs, emb_e_img.transpose(1,0))

            pred = real + img
        
        else:
            s_real, s_img = torch.chunk(rel_emb, 2, dim=-1)
            rel_real, rel_img = torch.chunk(sub_emb, 2, dim=-1)
            emb_e_real, emb_e_img = torch.chunk(self.emb_e.weight, 2, dim=-1)
            
            s_real = self.inp_drop(s_real)
            s_img = self.inp_drop(s_img)
            rel_real = self.inp_drop(rel_real)
            rel_img = self.inp_drop(rel_img)
            
            realo_realreal = s_real*rel_real
            realo_imgimg = s_img*rel_img
            realo = realo_realreal - realo_imgimg
            real = torch.mm(realo, emb_e_real.transpose(1,0))

            imgo_realimg = s_real*rel_img
            imgo_imgreal = s_img*rel_real
            imgo = imgo_realimg + imgo_imgreal
            img = torch.mm(imgo, emb_e_img.transpose(1,0))

            pred = real + img
        
        if sigmoid:
            pred = torch.sigmoid(pred)

        return pred
    
    def score_triples(self, sub, rel, obj, sigmoid=False):
        '''
        Inputs - subject, relation, object
        Return - score
        '''
        sub_emb = self.emb_e(sub).squeeze(dim=1)
        rel_emb = self.emb_rel(rel).squeeze(dim=1)
        obj_emb = self.emb_e(obj).squeeze(dim=1)
        
        s_real, s_img = torch.chunk(sub_emb, 2, dim=-1)
        rel_real, rel_img = torch.chunk(rel_emb, 2, dim=-1)
        o_real, o_img = torch.chunk(obj_emb, 2, dim=-1)
        
        realrealreal = torch.sum(s_real*rel_real*o_real, dim=-1)
        realimgimg = torch.sum(s_real*rel_img*o_img, axis=-1)
        imgrealimg = torch.sum(s_img*rel_real*o_img, axis=-1)
        imgimgreal = torch.sum(s_img*rel_img*o_real, axis=-1)
        
        pred = realrealreal + realimgimg + imgrealimg - imgimgreal
        
        if sigmoid:
            pred = torch.sigmoid(pred)

        return pred
    
    def score_emb(self, emb_s, emb_r, emb_o, sigmoid=False):
        '''
        Inputs - embeddings of subject, relation, object
        Return - score
        '''
        
        s_real, s_img = torch.chunk(emb_s, 2, dim=-1)
        rel_real, rel_img = torch.chunk(emb_r, 2, dim=-1)
        o_real, o_img = torch.chunk(emb_o, 2, dim=-1)
        
        realrealreal = torch.sum(s_real*rel_real*o_real, dim=-1)
        realimgimg = torch.sum(s_real*rel_img*o_img, axis=-1)
        imgrealimg = torch.sum(s_img*rel_real*o_img, axis=-1)
        imgimgreal = torch.sum(s_img*rel_img*o_real, axis=-1)
        
        pred = realrealreal + realimgimg + imgrealimg - imgimgreal
        
        if sigmoid:
            pred = torch.sigmoid(pred)

        return pred
    
    def score_triples_vec(self, sub, rel, obj, sigmoid=False):
        '''
        Inputs - subject, relation, object
        Return - a vector score for the triple instead of reducing over the embedding dimension
        '''
        sub_emb = self.emb_e(sub).squeeze(dim=1)
        rel_emb = self.emb_rel(rel).squeeze(dim=1)
        obj_emb = self.emb_e(obj).squeeze(dim=1)
        
        s_real, s_img = torch.chunk(sub_emb, 2, dim=-1)
        rel_real, rel_img = torch.chunk(rel_emb, 2, dim=-1)
        o_real, o_img = torch.chunk(obj_emb, 2, dim=-1)
        
        realrealreal = s_real*rel_real*o_real
        realimgimg = s_real*rel_img*o_img
        imgrealimg = s_img*rel_real*o_img
        imgimgreal = s_img*rel_img*o_real
        
        pred = realrealreal + realimgimg + imgrealimg - imgimgreal
        
        if sigmoid:
            pred = torch.sigmoid(pred)

        return pred
    
class Conve(torch.nn.Module):

    #Too slow !!!!

    def __init__(self, args, num_entities, num_relations):
        super(Conve, self).__init__()
        
        if args.max_norm:
            self.emb_e = torch.nn.Embedding(num_entities, args.embedding_dim, max_norm=1.0)
            self.emb_rel = torch.nn.Embedding(num_relations, args.embedding_dim)
        else:
            self.emb_e = torch.nn.Embedding(num_entities, args.embedding_dim, padding_idx=None)
            self.emb_rel = torch.nn.Embedding(num_relations, args.embedding_dim, padding_idx=None)
        
        self.inp_drop = torch.nn.Dropout(args.input_drop)
        self.hidden_drop = torch.nn.Dropout(args.hidden_drop)
        self.feature_drop = torch.nn.Dropout2d(args.feat_drop)
        
        self.embedding_dim = args.embedding_dim #default is 200
        self.num_filters = args.num_filters # default is 32
        self.kernel_size = args.kernel_size # default is 3
        self.stack_width = args.stack_width # default is 20
        self.stack_height = args.embedding_dim // self.stack_width
        
        self.bn0 = torch.nn.BatchNorm2d(1)
        self.bn1 = torch.nn.BatchNorm2d(self.num_filters)
        self.bn2 = torch.nn.BatchNorm1d(args.embedding_dim)

        self.conv1 = torch.nn.Conv2d(1, out_channels=self.num_filters, 
                                     kernel_size=(self.kernel_size, self.kernel_size), 
                                     stride=1, padding=0, bias=args.use_bias)
        #self.conv1 = torch.nn.Conv2d(1, 32, (3, 3), 1, 0, bias=args.use_bias) # <-- default
        
        flat_sz_h = int(2*self.stack_width) - self.kernel_size + 1
        flat_sz_w = self.stack_height - self.kernel_size + 1
        self.flat_sz  = flat_sz_h*flat_sz_w*self.num_filters
        self.fc = torch.nn.Linear(self.flat_sz, args.embedding_dim)
        
        self.register_parameter('b', Parameter(torch.zeros(num_entities)))
        self.loss = torch.nn.CrossEntropyLoss()

        self.init()
    
    def init(self):
        xavier_normal_(self.emb_e.weight)
        xavier_normal_(self.emb_rel.weight)
    
    def concat(self, e1_embed, rel_embed, form='plain'):
        if form == 'plain':
            e1_embed = e1_embed. view(-1, 1, self.stack_width, self.stack_height)
            rel_embed = rel_embed.view(-1, 1, self.stack_width, self.stack_height)
            stack_inp = torch.cat([e1_embed, rel_embed], 2)

        elif form == 'alternate':
            e1_embed = e1_embed. view(-1, 1, self.embedding_dim)
            rel_embed = rel_embed.view(-1, 1, self.embedding_dim)
            stack_inp = torch.cat([e1_embed, rel_embed], 1)
            stack_inp = torch.transpose(stack_inp, 2, 1).reshape((-1, 1, 2*self.stack_width, self.stack_height))

        else: raise NotImplementedError
        return stack_inp
    
    def conve_architecture(self, sub_emb, rel_emb):
        stacked_inputs = self.concat(sub_emb, rel_emb)
        stacked_inputs = self.bn0(stacked_inputs)
        x  = self.inp_drop(stacked_inputs)
        x  = self.conv1(x)
        x  = self.bn1(x)
        x  = F.relu(x)
        x  = self.feature_drop(x)
        #x  = x.view(x.shape[0], -1)
        x  = x.view(-1, self.flat_sz)
        x  = self.fc(x)
        x  = self.hidden_drop(x)
        x  = self.bn2(x)
        x  = F.relu(x)
        
        return x
    
    def score_sr(self, sub, rel, sigmoid = False):
        sub_emb = self.emb_e(sub)
        rel_emb = self.emb_rel(rel)
        
        x = self.conve_architecture(sub_emb, rel_emb)
        
        pred = torch.mm(x, self.emb_e.weight.transpose(1,0))
        pred += self.b.expand_as(pred) 
        
        if sigmoid:
            pred = torch.sigmoid(pred) 
        return pred
    
    def score_or(self, obj, rel, sigmoid = False):
        obj_emb = self.emb_e(obj)
        rel_emb = self.emb_rel(rel)
        
        x = self.conve_architecture(obj_emb, rel_emb)
        pred = torch.mm(x, self.emb_e.weight.transpose(1,0))
        pred += self.b.expand_as(pred)
        
        if sigmoid:
            pred = torch.sigmoid(pred)
        return pred
    
    
    def forward(self, sub_emb, rel_emb, mode='rhs', sigmoid=False):
        '''
        When mode is 'rhs' we expect (s,r); for 'lhs', we expect (o,r)
        For conve, computations for both modes are equivalent, so we do not need if-else block
        '''
        x = self.conve_architecture(sub_emb, rel_emb)
        
        pred = torch.mm(x, self.emb_e.weight.transpose(1,0))
        pred += self.b.expand_as(pred)
            
        if sigmoid:
            pred = torch.sigmoid(pred)

        return pred
    
    def score_triples(self, sub, rel, obj, sigmoid=False):
        '''
        Inputs - subject, relation, object
        Return - score
        '''
        sub_emb = self.emb_e(sub)
        rel_emb = self.emb_rel(rel)
        obj_emb = self.emb_e(obj)
        x = self.conve_architecture(sub_emb, rel_emb)
        
        pred = torch.mm(x, obj_emb.transpose(1,0))
        #print(pred.shape)
        pred += self.b[obj].expand_as(pred) #taking the bias value for object embedding
        # above works fine for single input triples; 
        # but if input is batch of triples, then this is a matrix of (num_trip x num_trip) where diagonal is scores
        # so use torch.diagonal() after calling this function
        pred = torch.diagonal(pred)
        # or could have used : pred= torch.sum(x*obj_emb, dim=-1)
        
        if sigmoid:
            pred = torch.sigmoid(pred)

        return pred
    
    def score_emb(self, emb_s, emb_r, emb_o, sigmoid=False):
        '''
        Inputs - embeddings of subject, relation, object
        Return - score
        '''
        x = self.conve_architecture(emb_s, emb_r)
        
        pred = torch.mm(x, emb_o.transpose(1,0))
        #pred += self.b[obj].expand_as(pred) #taking the bias value for object embedding - don't know which obj
        # above works fine for single input triples; 
        # but if input is batch of triples, then this is a matrix of (num_trip x num_trip) where diagonal is scores
        # so use torch.diagonal() after calling this function
        pred = torch.diagonal(pred)
        # or could have used : pred= torch.sum(x*obj_emb, dim=-1)
        
        if sigmoid:
            pred = torch.sigmoid(pred)

        return pred
    
    def score_triples_vec(self, sub, rel, obj, sigmoid=False):
        '''
        Inputs - subject, relation, object
        Return - a vector score for the triple instead of reducing over the embedding dimension
        '''
        sub_emb = self.emb_e(sub)
        rel_emb = self.emb_rel(rel)
        obj_emb = self.emb_e(obj)
        
        x = self.conve_architecture(sub_emb, rel_emb)
        
        #pred = torch.mm(x, obj_emb.transpose(1,0))
        pred = x*obj_emb
        #print(pred.shape, self.b[obj].shape) #shapes are [7,200] and [7]
        #pred += self.b[obj].expand_as(pred) #taking the bias value for object embedding - can't add scalar to vector
        
        #pred = sub_emb*rel_emb*obj_emb
        
        if sigmoid:
            pred = torch.sigmoid(pred)

        return pred