File size: 16,063 Bytes
fce1f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
#%%
import logging
from symbol import parameters
from textwrap import indent
import os
import tempfile
import sys
from matplotlib import collections
import pandas as pd
import json
from glob import glob
from tqdm import tqdm
import numpy as np
from pprint import pprint
import torch
import pickle as pkl
from collections import Counter 
# print(dir(collections))
import networkx as nx
from collections import Counter
import utils
from torch.nn import functional as F
sys.path.append("..")
import Parameters
from DiseaseSpecific.attack import calculate_edge_bound, get_model_loss_without_softmax

#%%
def load_data(file_name):
    df = pd.read_csv(file_name, sep='\t', header=None, names=None, dtype=str)
    df = df.drop_duplicates()
    return df.values

parser = utils.get_argument_parser()
parser.add_argument('--reasonable-rate', type = float, default=0.7, help = 'The added edge\'s existance rank prob greater than this rate')
parser.add_argument('--init-mode', type = str, default='single', help = 'How to select target nodes') # 'single' for case study 
parser.add_argument('--added-edge-num', type = str, default = '', help = 'Added edge num')

args = parser.parse_args()
args = utils.set_hyperparams(args)
utils.seed_all(args.seed)
graph_edge_path = '../DiseaseSpecific/processed_data/GNBR/all.txt'
idtomeshid_path = '../DiseaseSpecific/processed_data/GNBR/entities_reverse_dict.json'
model_path = f'../DiseaseSpecific/saved_models/GNBR_{args.model}_128_0.2_0.3_0.3.model'
data_path = '../DiseaseSpecific/processed_data/GNBR'
with open(Parameters.GNBRfile+'original_entity_raw_name', 'rb') as fl:
    full_entity_raw_name = pkl.load(fl)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args.device = device
n_ent, n_rel, ent_to_id, rel_to_id = utils.generate_dicts(data_path)
model = utils.load_model(model_path, args, n_ent, n_rel, args.device)
print(device)

graph_edge = utils.load_data(graph_edge_path)
with open(idtomeshid_path, 'r') as fl:
    idtomeshid = json.load(fl)
print(graph_edge.shape, len(idtomeshid))

divide_bound, data_mean, data_std = calculate_edge_bound(graph_edge, model, args.device, n_ent)
print('Defender ...')
print(divide_bound, data_mean, data_std)

meshids = list(idtomeshid.values())
cal = {
    'chemical' : 0,
    'disease' : 0,
    'gene' : 0
}
for meshid in meshids:
    cal[meshid.split('_')[0]] += 1
# pprint(cal)

def check_reasonable(s, r, o):

    train_trip = np.asarray([[s, r, o]])
    train_trip = torch.from_numpy(train_trip.astype('int64')).to(device)
    edge_loss = get_model_loss_without_softmax(train_trip, model, device).squeeze()
    # edge_losse_log_prob = torch.log(F.softmax(-edge_loss, dim = -1))

    edge_loss = edge_loss.item() 
    edge_loss = (edge_loss - data_mean) / data_std
    edge_losses_prob =  1 / ( 1 + np.exp(edge_loss - divide_bound) )
    bound = 1 - args.reasonable_rate

    return (edge_losses_prob > bound),  edge_losses_prob

edgeid_to_edgetype = {}
edgeid_to_reversemask = {}
for k, id_list in Parameters.edge_type_to_id.items():
    for iid, mask in zip(id_list, Parameters.reverse_mask[k]):
        edgeid_to_edgetype[str(iid)] = k
        edgeid_to_reversemask[str(iid)] = mask
reverse_tot = 0
G = nx.DiGraph()
for s, r, o in graph_edge:
    assert idtomeshid[s].split('_')[0] == edgeid_to_edgetype[r].split('-')[0]
    if edgeid_to_reversemask[r] == 1:
        reverse_tot += 1
        G.add_edge(int(o), int(s))
    else:
        G.add_edge(int(s), int(o))
# print(reverse_tot)
print('Edge num:', G.number_of_edges(), 'Node num:', G.number_of_nodes())
pagerank_value_1 = nx.pagerank(G, max_iter = 200, tol=1.0e-7) 

#%%
with open(Parameters.UMLSfile+'drug_term', 'rb') as fl:
    drug_term = pkl.load(fl)
with open(Parameters.GNBRfile+'entity_raw_name', 'rb') as fl:
    entity_raw_name = pkl.load(fl)
drug_meshid = []
for meshid, nm in entity_raw_name.items():
    if nm.lower() in drug_term and meshid.split('_')[0] == 'chemical':
        drug_meshid.append(meshid)
drug_meshid = set(drug_meshid)
pr = list(pagerank_value_1.items())
pr.sort(key = lambda x: x[1])
sorted_rank = { 'chemical' : [],
                'gene' : [],
                'disease': [],
                'merged' : []}
for iid, score in pr:
    tp = idtomeshid[str(iid)].split('_')[0]
    if tp == 'chemical':
        if idtomeshid[str(iid)] in drug_meshid:
            sorted_rank[tp].append((iid, score))
    else:
        sorted_rank[tp].append((iid, score))
        sorted_rank['merged'].append((iid, score))
llen = len(sorted_rank['merged']) 
sorted_rank['merged'] = sorted_rank['merged'][llen * 3 // 4 : ]
print(len(sorted_rank['chemical']))
print(len(sorted_rank['gene']), len(sorted_rank['disease']), len(sorted_rank['merged']))

#%%
Target_node_list = []
Attack_edge_list = []
if args.init_mode == '':

    if args.added_edge_num != '' and args.added_edge_num != '1':
        raise Exception('added_edge_num must be 1 when init_mode=='' ')
    for init_p in [0.1, 0.3, 0.5, 0.7, 0.9]:

        p  = len(sorted_rank['chemical']) * init_p
        print('Init p:', init_p)
        target_node_list = []
        attack_edge_list = []
        num_max_eq = 0
        mean_rank_of_total_max = 0
        for pp in tqdm(range(int(p)-10, int(p)+10)):
            target = sorted_rank['chemical'][pp][0]
            target_node_list.append(target)

            candidate_list = []
            score_list = []
            loss_list = []
            for iid, score in sorted_rank['merged']:
                a = G.number_of_edges(iid, target) + 1
                if a != 1:
                    continue
                b = G.out_degree(iid) + 1
                tp = idtomeshid[str(iid)].split('_')[0]
                edge_losses = []
                r_list = []
                for r in range(len(edgeid_to_edgetype)):
                    r_tp = edgeid_to_edgetype[str(r)]
                    if (edgeid_to_reversemask[str(r)] == 0 and r_tp.split('-')[0] == tp and r_tp.split('-')[1] == 'chemical'):
                        train_trip = np.array([[iid, r, target]])
                        train_trip = torch.from_numpy(train_trip.astype('int64')).to(device)
                        edge_loss = get_model_loss_without_softmax(train_trip, model, device).squeeze()
                        edge_losses.append(edge_loss.unsqueeze(0).detach())
                        r_list.append(r)
                    elif(edgeid_to_reversemask[str(r)] == 1 and r_tp.split('-')[0] == 'chemical' and r_tp.split('-')[1] == tp):
                        train_trip = np.array([[iid, r, target]]) # add batch dim
                        train_trip = torch.from_numpy(train_trip.astype('int64')).to(device)
                        edge_loss = get_model_loss_without_softmax(train_trip, model, device).squeeze()
                        edge_losses.append(edge_loss.unsqueeze(0).detach())
                        r_list.append(r)
                if len(edge_losses)==0:
                    continue
                min_index = torch.argmin(torch.cat(edge_losses, dim = 0))
                r = r_list[min_index]
                r_tp = edgeid_to_edgetype[str(r)]
                
                if (edgeid_to_reversemask[str(r)] == 0):
                    bo, prob = check_reasonable(iid, r, target)
                    if bo:
                        candidate_list.append((iid, r, target))
                        score_list.append(score * a / b)
                        loss_list.append(edge_losses[min_index].item())
                if (edgeid_to_reversemask[str(r)] == 1):
                    bo, prob = check_reasonable(target, r, iid)
                    if bo:
                        candidate_list.append((target, r, iid))
                        score_list.append(score * a / b)
                        loss_list.append(edge_losses[min_index].item())
            
            if len(candidate_list) == 0:
                attack_edge_list.append((-1, -1, -1))
                continue
            norm_score = np.array(score_list) / np.sum(score_list)
            norm_loss = np.exp(-np.array(loss_list)) / np.sum(np.exp(-np.array(loss_list)))

            total_score = norm_score * norm_loss
            max_index = np.argmax(total_score)
            attack_edge_list.append(candidate_list[max_index])

            score_max_index = np.argmax(norm_score)
            if score_max_index == max_index:
                num_max_eq += 1

            score_index_list = list(zip(list(range(len(norm_score))), norm_score))
            score_index_list.sort(key = lambda x: x[1], reverse = True)
            max_index_in_score = score_index_list.index((max_index, norm_score[max_index]))
            mean_rank_of_total_max += max_index_in_score / len(norm_score)
        print('num_max_eq:', num_max_eq)
        print('mean_rank_of_total_max:', mean_rank_of_total_max / 20)
        Target_node_list.append(target_node_list)
        Attack_edge_list.append(attack_edge_list)
else:
    assert args.init_mode == 'random' or args.init_mode == 'single'
    print(f'Init mode : {args.init_mode}')
    utils.seed_all(args.seed)

    if args.init_mode == 'random':
        index = np.random.choice(len(sorted_rank['chemical']), 400, replace = False)
    else:
        # index = [5807, 6314, 5799, 5831, 3954, 5654, 5649, 5624, 2412, 2407]
        
        index = np.random.choice(len(sorted_rank['chemical']), 400, replace = False)
        with open(f'../pagerank/results/After_distmult_0.7random10.pkl', 'rb') as fl:
            edge = pkl.load(fl)
        with open('../pagerank/results/Init_0.7random.pkl', 'rb') as fl:
            init = pkl.load(fl)
        increase = (np.array(init) - np.array(edge)) / np.array(init)
        increase = increase.reshape(-1)
        selected_index = np.argsort(increase)[::-1][:10]
        # print(selected_index)
        # print(increase[selected_index])
        # print(np.array(init)[selected_index])
        # print(np.array(edge)[selected_index])
        index = [index[i] for i in selected_index]
        # llen = len(sorted_rank['chemical'])
        # index = np.random.choice(range(llen//4, llen), 4, replace = False)
        # index = selected_index + list(index)
        # for i in index:
        #     ii = str(sorted_rank['chemical'][i][0])
        #     nm = entity_raw_name[idtomeshid[ii]]
        #     nmset = full_entity_raw_name[idtomeshid[ii]]
        #     print('**'*10)
        #     print(i)
        #     print(nm)
        #     print(nmset)
        # raise Exception('stop')
    target_node_list = []
    attack_edge_list = []
    num_max_eq = 0
    mean_rank_of_total_max = 0

    for pp in tqdm(index):
        target = sorted_rank['chemical'][pp][0]
        target_node_list.append(target)

        print('Target:', entity_raw_name[idtomeshid[str(target)]])

        candidate_list = []
        score_list = []
        loss_list = []
        main_dict = {}
        for iid, score in sorted_rank['merged']:
            a = G.number_of_edges(iid, target) + 1
            if a != 1:
                continue
            b = G.out_degree(iid) + 1
            tp = idtomeshid[str(iid)].split('_')[0]
            edge_losses = []
            r_list = []
            for r in range(len(edgeid_to_edgetype)):
                r_tp = edgeid_to_edgetype[str(r)]
                if (edgeid_to_reversemask[str(r)] == 0 and r_tp.split('-')[0] == tp and r_tp.split('-')[1] == 'chemical'):
                    train_trip = np.array([[iid, r, target]])
                    train_trip = torch.from_numpy(train_trip.astype('int64')).to(device)
                    edge_loss = get_model_loss_without_softmax(train_trip, model, device).squeeze()
                    edge_losses.append(edge_loss.unsqueeze(0).detach())
                    r_list.append(r)
                elif(edgeid_to_reversemask[str(r)] == 1 and r_tp.split('-')[0] == 'chemical' and r_tp.split('-')[1] == tp):
                    train_trip = np.array([[iid, r, target]]) # add batch dim
                    train_trip = torch.from_numpy(train_trip.astype('int64')).to(device)
                    edge_loss = get_model_loss_without_softmax(train_trip, model, device).squeeze()
                    edge_losses.append(edge_loss.unsqueeze(0).detach())
                    r_list.append(r)
            if len(edge_losses)==0:
                continue
            min_index = torch.argmin(torch.cat(edge_losses, dim = 0))
            r = r_list[min_index]
            r_tp = edgeid_to_edgetype[str(r)]
            

            old_len = len(candidate_list)
            if (edgeid_to_reversemask[str(r)] == 0):
                bo, prob = check_reasonable(iid, r, target)
                if bo:
                    candidate_list.append((iid, r, target))
                    score_list.append(score * a / b)
                    loss_list.append(edge_losses[min_index].item())
            if (edgeid_to_reversemask[str(r)] == 1):
                bo, prob = check_reasonable(target, r, iid)
                if bo:
                    candidate_list.append((target, r, iid))
                    score_list.append(score * a / b)
                    loss_list.append(edge_losses[min_index].item())

            if len(candidate_list) != old_len:
                if int(iid) in main_iid:
                    main_dict[iid] = len(candidate_list) - 1
        
        if len(candidate_list) == 0:
            if args.added_edge_num == '' or int(args.added_edge_num) == 1:
                attack_edge_list.append((-1,-1,-1))
            else:
                attack_edge_list.append([])
            continue
        norm_score = np.array(score_list) / np.sum(score_list)
        norm_loss = np.exp(-np.array(loss_list)) / np.sum(np.exp(-np.array(loss_list)))

        total_score = norm_score * norm_loss
        total_score_index = list(zip(range(len(total_score)), total_score))
        total_score_index.sort(key = lambda x: x[1], reverse = True)

        norm_score_index = np.argsort(norm_score)[::-1]
        norm_loss_index = np.argsort(norm_loss)[::-1]
        total_index = np.argsort(total_score)[::-1]
        assert total_index[0] == total_score_index[0][0]
        # find rank of main index 
        for k, v in main_dict.items():
            k = int(k)
            index = v
            print(f'score rank of {entity_raw_name[idtomeshid[str(k)]]}: ', norm_score_index.tolist().index(index))
            print(f'loss rank of {entity_raw_name[idtomeshid[str(k)]]}: ', norm_loss_index.tolist().index(index))
            print(f'total rank of {entity_raw_name[idtomeshid[str(k)]]}: ', total_index.tolist().index(index))
        
        max_index = np.argmax(total_score)
        assert max_index == total_score_index[0][0]

        tmp_add = []
        add_num = 1
        if args.added_edge_num == '' or int(args.added_edge_num) == 1:
            attack_edge_list.append(candidate_list[max_index])
        else:
            add_num = int(args.added_edge_num)
            for i in range(add_num):
                tmp_add.append(candidate_list[total_score_index[i][0]])
            attack_edge_list.append(tmp_add)

        score_max_index = np.argmax(norm_score)
        if score_max_index == max_index:
            num_max_eq += 1
        score_index_list = list(zip(list(range(len(norm_score))), norm_score))
        score_index_list.sort(key = lambda x: x[1], reverse = True)
        max_index_in_score = score_index_list.index((max_index, norm_score[max_index]))
        mean_rank_of_total_max += max_index_in_score / len(norm_score)
    print('num_max_eq:', num_max_eq)
    print('mean_rank_of_total_max:', mean_rank_of_total_max / 400)
    Target_node_list = target_node_list
    Attack_edge_list = attack_edge_list
print(np.array(Target_node_list).shape)
print(np.array(Attack_edge_list).shape)
# with open(f'processed_data/target_{args.reasonable_rate}{args.init_mode}.pkl', 'wb') as fl:
#     pkl.dump(Target_node_list, fl)
# with open(f'processed_data/attack_edge_{args.model}_{args.reasonable_rate}{args.init_mode}{args.added_edge_num}.pkl', 'wb') as fl:
#     pkl.dump(Attack_edge_list, fl)