Spaces:
Runtime error
Runtime error
File size: 8,329 Bytes
fce1f4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
#%%
import logging
from symbol import parameters
from textwrap import indent
import os
import tempfile
import sys
from matplotlib import collections
import pandas as pd
import json
from glob import glob
from tqdm import tqdm
import numpy as np
from pprint import pprint
import torch
import pickle as pkl
from collections import Counter
# print(dir(collections))
import networkx as nx
from collections import Counter
import utils
from torch.nn import functional as F
sys.path.append("..")
import Parameters
from DiseaseSpecific.attack import calculate_edge_bound, get_model_loss_without_softmax
#%%
def load_data(file_name):
df = pd.read_csv(file_name, sep='\t', header=None, names=None, dtype=str)
df = df.drop_duplicates()
return df.values
parser = utils.get_argument_parser()
parser.add_argument('--reasonable-rate', type = float, default=0.7, help = 'The added edge\'s existance rank prob greater than this rate')
parser.add_argument('--mode', type = str, default='', help = ' "" or chat or bioBART')
parser.add_argument('--init-mode', type = str, default='random', help = 'How to select target nodes') # 'single' for case study
parser.add_argument('--added-edge-num', type = str, default = '', help = 'Added edge num')
args = parser.parse_args()
args = utils.set_hyperparams(args)
utils.seed_all(args.seed)
graph_edge_path = '../DiseaseSpecific/processed_data/GNBR/all.txt'
idtomeshid_path = '../DiseaseSpecific/processed_data/GNBR/entities_reverse_dict.json'
model_path = f'../DiseaseSpecific/saved_models/GNBR_{args.model}_128_0.2_0.3_0.3.model'
data_path = '../DiseaseSpecific/processed_data/GNBR'
target_path = f'processed_data/target_{args.reasonable_rate}{args.init_mode}.pkl'
attack_path = f'processed_data/attack_edge_{args.model}_{args.reasonable_rate}{args.init_mode}{args.added_edge_num}{args.mode}.pkl'
with open(Parameters.GNBRfile+'original_entity_raw_name', 'rb') as fl:
full_entity_raw_name = pkl.load(fl)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = torch.device("cpu")
args.device = device
n_ent, n_rel, ent_to_id, rel_to_id = utils.generate_dicts(data_path)
model = utils.load_model(model_path, args, n_ent, n_rel, args.device)
graph_edge = utils.load_data(graph_edge_path)
with open(idtomeshid_path, 'r') as fl:
idtomeshid = json.load(fl)
print(graph_edge.shape, len(idtomeshid))
divide_bound, data_mean, data_std = calculate_edge_bound(graph_edge, model, args.device, n_ent)
print('Defender ...')
print(divide_bound, data_mean, data_std)
meshids = list(idtomeshid.values())
cal = {
'chemical' : 0,
'disease' : 0,
'gene' : 0
}
for meshid in meshids:
cal[meshid.split('_')[0]] += 1
# pprint(cal)
def check_reasonable(s, r, o):
train_trip = np.asarray([[s, r, o]])
train_trip = torch.from_numpy(train_trip.astype('int64')).to(device)
edge_loss = get_model_loss_without_softmax(train_trip, model, device).squeeze()
# edge_losse_log_prob = torch.log(F.softmax(-edge_loss, dim = -1))
edge_loss = edge_loss.item()
edge_loss = (edge_loss - data_mean) / data_std
edge_losses_prob = 1 / ( 1 + np.exp(edge_loss - divide_bound) )
bound = 1 - args.reasonable_rate
return (edge_losses_prob > bound), edge_losses_prob
edgeid_to_edgetype = {}
edgeid_to_reversemask = {}
for k, id_list in Parameters.edge_type_to_id.items():
for iid, mask in zip(id_list, Parameters.reverse_mask[k]):
edgeid_to_edgetype[str(iid)] = k
edgeid_to_reversemask[str(iid)] = mask
with open(target_path, 'rb') as fl:
Target_node_list = pkl.load(fl)
with open(attack_path, 'rb') as fl:
Attack_edge_list = pkl.load(fl)
with open(Parameters.UMLSfile+'drug_term', 'rb') as fl:
drug_term = pkl.load(fl)
with open(Parameters.GNBRfile+'entity_raw_name', 'rb') as fl:
entity_raw_name = pkl.load(fl)
drug_meshid = []
for meshid, nm in entity_raw_name.items():
if nm.lower() in drug_term and meshid.split('_')[0] == 'chemical':
drug_meshid.append(meshid)
drug_meshid = set(drug_meshid)
if args.init_mode == 'single':
name_list = []
for target in Target_node_list:
name = entity_raw_name[idtomeshid[str(target)]]
name_list.append(name)
with open(f'results/name_list_{args.reasonable_rate}{args.init_mode}.txt', 'w') as fl:
fl.write('\n'.join(name_list))
# print(Target_node_list)
# # print(Attack_edge_list)
# addset = set()
# if args.added_edge_num == 1:
# for edge in Attack_edge_list:
# addset.add(edge[2])
# else:
# for edge_list in Attack_edge_list:
# for edge in edge_list:
# addset.add(edge[2])
# print(addset)
# print(len(addset))
# typeset = set()
# for iid in addset:
# typeset.add(idtomeshid[str(iid)].split('_')[0])
# print(typeset)
# raise Exception('done')
if args.init_mode == 'single':
Target_node_list = [[Target_node_list[i]] for i in range(len(Target_node_list))]
Attack_edge_list = [[Attack_edge_list[i]] for i in range(len(Attack_edge_list))]
else:
print(len(Attack_edge_list), len(Target_node_list))
tmp_target_node_list = []
tmp_attack_edge_list = []
for l in range(0,len(Target_node_list), 50):
r = min(l+50, len(Target_node_list))
tmp_target_node_list.append(Target_node_list[l:r])
tmp_attack_edge_list.append(Attack_edge_list[l:r])
Target_node_list = tmp_target_node_list
Attack_edge_list = tmp_attack_edge_list
# for i, init_p in enumerate([0.1, 0.3, 0.5, 0.7, 0.9]):
# target_node_list = Target_node_list[i]
# attack_edge_list = Attack_edge_list[i]
Init = []
After = []
# final_init = []
# final_after = []
for i, (target_node_list, attack_edge_list) in enumerate(zip(Target_node_list, Attack_edge_list)):
G = nx.DiGraph()
for s, r, o in graph_edge:
assert idtomeshid[s].split('_')[0] == edgeid_to_edgetype[r].split('-')[0]
if edgeid_to_reversemask[r] == 1:
G.add_edge(int(o), int(s))
else:
G.add_edge(int(s), int(o))
pagerank_value_1 = nx.pagerank(G, max_iter = 200, tol=1.0e-7)
for target, attack_list in tqdm(list(zip(target_node_list, attack_edge_list))):
pr = list(pagerank_value_1.items())
pr.sort(key = lambda x: x[1])
list_iid = []
for iid, score in pr:
tp = idtomeshid[str(iid)].split('_')[0]
if tp == 'chemical':
# if idtomeshid[str(iid)] in drug_meshid:
list_iid.append(iid)
init_rank = len(list_iid) - list_iid.index(target)
# init_rank = 1 - list_iid.index(target) / len(list_iid)
Init.append(init_rank)
for target, attack_list in tqdm(list(zip(target_node_list, attack_edge_list))):
if args.mode == '' and (args.added_edge_num == '' or int(args.added_edge_num) == 1):
if int(attack_list[0]) == -1:
attack_list = []
else:
attack_list = [attack_list]
if len(attack_list) > 0:
for s, r, o in attack_list:
bo, prob = check_reasonable(s, r, o)
if bo:
if edgeid_to_reversemask[str(r)] == 1:
G.add_edge(int(o), int(s))
else:
G.add_edge(int(s), int(o))
pagerank_value_1 = nx.pagerank(G, max_iter = 200, tol=1.0e-7)
for target, attack_list in tqdm(list(zip(target_node_list, attack_edge_list))):
pr = list(pagerank_value_1.items())
pr.sort(key = lambda x: x[1])
list_iid = []
for iid, score in pr:
tp = idtomeshid[str(iid)].split('_')[0]
if tp == 'chemical':
# if idtomeshid[str(iid)] in drug_meshid:
list_iid.append(iid)
after_rank = len(list_iid) - list_iid.index(target)
# after_rank = 1 - list_iid.index(target) / len(list_iid)
After.append(after_rank)
with open(f'results/Init_{args.reasonable_rate}{args.init_mode}.pkl', 'wb') as fl:
pkl.dump(Init, fl)
with open(f'results/After_{args.model}_{args.reasonable_rate}{args.init_mode}{args.added_edge_num}{args.mode}.pkl', 'wb') as fl:
pkl.dump(After, fl)
print(np.mean(Init), np.std(Init))
print(np.mean(After), np.std(After))
|