File size: 8,329 Bytes
fce1f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#%%
import logging
from symbol import parameters
from textwrap import indent
import os
import tempfile
import sys
from matplotlib import collections
import pandas as pd
import json
from glob import glob
from tqdm import tqdm
import numpy as np
from pprint import pprint
import torch
import pickle as pkl
from collections import Counter 
# print(dir(collections))
import networkx as nx
from collections import Counter
import utils
from torch.nn import functional as F
sys.path.append("..")
import Parameters
from DiseaseSpecific.attack import calculate_edge_bound, get_model_loss_without_softmax

#%%
def load_data(file_name):
    df = pd.read_csv(file_name, sep='\t', header=None, names=None, dtype=str)
    df = df.drop_duplicates()
    return df.values

parser = utils.get_argument_parser()
parser.add_argument('--reasonable-rate', type = float, default=0.7, help = 'The added edge\'s existance rank prob greater than this rate')
parser.add_argument('--mode', type = str, default='', help = ' "" or chat or bioBART')
parser.add_argument('--init-mode', type = str, default='random', help = 'How to select target nodes') # 'single' for case study 
parser.add_argument('--added-edge-num', type = str, default = '', help = 'Added edge num')

args = parser.parse_args()
args = utils.set_hyperparams(args)
utils.seed_all(args.seed)
graph_edge_path = '../DiseaseSpecific/processed_data/GNBR/all.txt'
idtomeshid_path = '../DiseaseSpecific/processed_data/GNBR/entities_reverse_dict.json'
model_path = f'../DiseaseSpecific/saved_models/GNBR_{args.model}_128_0.2_0.3_0.3.model'
data_path = '../DiseaseSpecific/processed_data/GNBR'
target_path = f'processed_data/target_{args.reasonable_rate}{args.init_mode}.pkl'
attack_path = f'processed_data/attack_edge_{args.model}_{args.reasonable_rate}{args.init_mode}{args.added_edge_num}{args.mode}.pkl'

with open(Parameters.GNBRfile+'original_entity_raw_name', 'rb') as fl:
    full_entity_raw_name = pkl.load(fl)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# device = torch.device("cpu")

args.device = device
n_ent, n_rel, ent_to_id, rel_to_id = utils.generate_dicts(data_path)
model = utils.load_model(model_path, args, n_ent, n_rel, args.device)

graph_edge = utils.load_data(graph_edge_path)
with open(idtomeshid_path, 'r') as fl:
    idtomeshid = json.load(fl)
print(graph_edge.shape, len(idtomeshid))

divide_bound, data_mean, data_std = calculate_edge_bound(graph_edge, model, args.device, n_ent)
print('Defender ...')
print(divide_bound, data_mean, data_std)

meshids = list(idtomeshid.values())
cal = {
    'chemical' : 0,
    'disease' : 0,
    'gene' : 0
}
for meshid in meshids:
    cal[meshid.split('_')[0]] += 1
# pprint(cal)

def check_reasonable(s, r, o):

    train_trip = np.asarray([[s, r, o]])
    train_trip = torch.from_numpy(train_trip.astype('int64')).to(device)
    edge_loss = get_model_loss_without_softmax(train_trip, model, device).squeeze()
    # edge_losse_log_prob = torch.log(F.softmax(-edge_loss, dim = -1))

    edge_loss = edge_loss.item() 
    edge_loss = (edge_loss - data_mean) / data_std
    edge_losses_prob =  1 / ( 1 + np.exp(edge_loss - divide_bound) )
    bound = 1 - args.reasonable_rate

    return (edge_losses_prob > bound),  edge_losses_prob

edgeid_to_edgetype = {}
edgeid_to_reversemask = {}
for k, id_list in Parameters.edge_type_to_id.items():
    for iid, mask in zip(id_list, Parameters.reverse_mask[k]):
        edgeid_to_edgetype[str(iid)] = k
        edgeid_to_reversemask[str(iid)] = mask

with open(target_path, 'rb') as fl:
    Target_node_list = pkl.load(fl)
with open(attack_path, 'rb') as fl:
    Attack_edge_list = pkl.load(fl)
with open(Parameters.UMLSfile+'drug_term', 'rb') as fl:
    drug_term = pkl.load(fl)
with open(Parameters.GNBRfile+'entity_raw_name', 'rb') as fl:
    entity_raw_name = pkl.load(fl)
drug_meshid = []
for meshid, nm in entity_raw_name.items():
    if nm.lower() in drug_term and meshid.split('_')[0] == 'chemical':
        drug_meshid.append(meshid)
drug_meshid = set(drug_meshid)

if args.init_mode == 'single':
    name_list = []
    for target in Target_node_list:
        name = entity_raw_name[idtomeshid[str(target)]]
        name_list.append(name)
    with open(f'results/name_list_{args.reasonable_rate}{args.init_mode}.txt', 'w') as fl:
        fl.write('\n'.join(name_list))
    # print(Target_node_list)
    # # print(Attack_edge_list)
    # addset = set()
    # if args.added_edge_num == 1:
    #     for edge in Attack_edge_list:
    #         addset.add(edge[2])
    # else:
    #     for edge_list in Attack_edge_list:
    #         for edge in edge_list:
    #             addset.add(edge[2])
    # print(addset)
    # print(len(addset))
    # typeset = set()
    # for iid in addset:
    #     typeset.add(idtomeshid[str(iid)].split('_')[0])
    # print(typeset)
    # raise Exception('done')

if args.init_mode == 'single':
    Target_node_list = [[Target_node_list[i]] for i in range(len(Target_node_list))]
    Attack_edge_list = [[Attack_edge_list[i]] for i in range(len(Attack_edge_list))]
else:
    print(len(Attack_edge_list), len(Target_node_list))
    tmp_target_node_list = []
    tmp_attack_edge_list = []
    for l in range(0,len(Target_node_list), 50):
        r = min(l+50, len(Target_node_list))
        tmp_target_node_list.append(Target_node_list[l:r])
        tmp_attack_edge_list.append(Attack_edge_list[l:r])
    Target_node_list = tmp_target_node_list
    Attack_edge_list = tmp_attack_edge_list

# for i, init_p in enumerate([0.1, 0.3, 0.5, 0.7, 0.9]):

#     target_node_list = Target_node_list[i]
#     attack_edge_list = Attack_edge_list[i]
Init = []
After = []
# final_init = []
# final_after = []
for i, (target_node_list, attack_edge_list) in enumerate(zip(Target_node_list, Attack_edge_list)):

    G = nx.DiGraph()
    for s, r, o in graph_edge:
        assert idtomeshid[s].split('_')[0] == edgeid_to_edgetype[r].split('-')[0]
        if edgeid_to_reversemask[r] == 1:
            G.add_edge(int(o), int(s))
        else:
            G.add_edge(int(s), int(o))

    pagerank_value_1 = nx.pagerank(G, max_iter = 200, tol=1.0e-7) 
    
    for target, attack_list in tqdm(list(zip(target_node_list, attack_edge_list))):
        pr = list(pagerank_value_1.items())
        pr.sort(key = lambda x: x[1])
        list_iid = []
        for iid, score in pr:
            tp = idtomeshid[str(iid)].split('_')[0]
            if tp == 'chemical':
                # if idtomeshid[str(iid)] in drug_meshid:
                list_iid.append(iid)
        init_rank = len(list_iid) - list_iid.index(target)
        # init_rank = 1 - list_iid.index(target) / len(list_iid)
        Init.append(init_rank)

    for target, attack_list in tqdm(list(zip(target_node_list, attack_edge_list))):
        
        if args.mode == '' and (args.added_edge_num == '' or int(args.added_edge_num) == 1):
            if int(attack_list[0]) == -1:
                attack_list = []
            else:
                attack_list = [attack_list]
        if len(attack_list) > 0:
            for s, r, o in attack_list:
                bo, prob = check_reasonable(s, r, o)
                if bo:
                    if edgeid_to_reversemask[str(r)] == 1:
                        G.add_edge(int(o), int(s))
                    else:
                        G.add_edge(int(s), int(o))
    pagerank_value_1 = nx.pagerank(G, max_iter = 200, tol=1.0e-7) 
    for target, attack_list in tqdm(list(zip(target_node_list, attack_edge_list))):
        pr = list(pagerank_value_1.items())
        pr.sort(key = lambda x: x[1])
        list_iid = []
        for iid, score in pr:
            tp = idtomeshid[str(iid)].split('_')[0]
            if tp == 'chemical':
                # if idtomeshid[str(iid)] in drug_meshid:
                list_iid.append(iid)
        after_rank = len(list_iid) - list_iid.index(target)
        # after_rank = 1 - list_iid.index(target) / len(list_iid)
        After.append(after_rank)
    with open(f'results/Init_{args.reasonable_rate}{args.init_mode}.pkl', 'wb') as fl:
        pkl.dump(Init, fl)
    with open(f'results/After_{args.model}_{args.reasonable_rate}{args.init_mode}{args.added_edge_num}{args.mode}.pkl', 'wb') as fl:
        pkl.dump(After, fl)
    print(np.mean(Init), np.std(Init))
    print(np.mean(After), np.std(After))