File size: 21,613 Bytes
ac7c391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import torch
import numpy as np
from torch.autograd import Variable
from sklearn import metrics

import datetime
from typing import Dict, Tuple, List
import logging
import os
import utils
import pickle as pkl
import json 
from tqdm import tqdm
import torch.backends.cudnn as cudnn

import sys
sys.path.append("..")
import Parameters

logger = logging.getLogger(__name__)

def get_model_loss_without_softmax(batch, model, device=None):

    with torch.no_grad():
        s,r,o = batch[:,0], batch[:,1], batch[:,2]

        emb_s = model.emb_e(s).squeeze(dim=1)
        emb_r = model.emb_rel(r).squeeze(dim=1)

        pred = model.forward(emb_s, emb_r)
        return -pred[range(o.shape[0]), o]

def check(trip, model, reasonable_rate, device, data_mean = -4.008113861083984, data_std = 5.153779983520508, divide_bound = 0.05440050354114886):

    if args.model == 'distmult':
        pass
    elif args.model == 'conve':
        data_mean = 13.890259742
        data_std = 12.396190643
        divide_bound = -0.1986345871
    else:
        raise Exception('Wrong model!!')
    trip = np.array(trip)
    train_trip = trip[None, :] 
    train_trip = torch.from_numpy(train_trip.astype('int64')).to(device)
    edge_loss = get_model_loss_without_softmax(train_trip, model, device).squeeze().item()

    bound = 1 - reasonable_rate
    edge_loss = (edge_loss - data_mean) / data_std
    edge_loss_prob =  1 / ( 1 + np.exp(edge_loss - divide_bound))
    return edge_loss_prob > bound


def get_ranking(model, queries,
                valid_filters:Dict[str, Dict[Tuple[str, int], torch.Tensor]],
                device, batch_size, entityid_to_nodetype, exists_edge):
    """
    Ranking for target generation.
    """
    ranks = []
    total_nums = []
    b_begin = 0

    for b_begin in range(0, len(queries), 1):
        b_queries = queries[b_begin : b_begin+1]
        s,r,o = b_queries[:,0], b_queries[:,1], b_queries[:,2]
        r_rev = r
        lhs_score = model.score_or(o, r_rev, sigmoid=False) #this gives scores not probabilities
        # print(b_queries.shape)
        for i, query in enumerate(b_queries):

            if not args.target_existed:
                tp1 = entityid_to_nodetype[str(query[0].item())]
                tp2 = entityid_to_nodetype[str(query[2].item())]
                filter = valid_filters['lhs'][(tp2, query[1].item())].clone()
                filter[exists_edge['lhs'][str(query[2].item())]] = False
                filter = (filter == False)
            else:
                tp1 = entityid_to_nodetype[str(query[0].item())]
                tp2 = entityid_to_nodetype[str(query[2].item())]
                filter = valid_filters['lhs'][(tp2, query[1].item())]
                filter = (filter == False)
            
            # if (str(query[2].item())) == '16566':
            #     print('16566', filter.sum(), valid_filters['lhs'][(tp2, query[1].item())].sum(), tp2, query[1].item())
            #     raise Exception('??')

            score = lhs_score
            #     target_value = rhs_score[i, query[0].item()].item()
            # zero all known cases (this are not interesting)
            # this corresponds to the filtered setting
            score[i][filter] = 1e6
            total_nums.append(n_ent - filter.sum().item())
            # write base the saved values
            # if b_begin < len(queries) // 2:
            #     score[i][query[2].item()] = target_value
            # else:
            #     score[i][query[0].item()] = target_value

        # sort and rank
        min_values, sort_v  = torch.sort(score, dim=1, descending=False) #low scores get low number ranks

        sort_v = sort_v.cpu().numpy()
        
        for i, query in enumerate(b_queries):
            # find the rank of the target entities
            rank = np.where(sort_v[i]==query[0].item())[0][0]

            # rank+1, since the lowest rank is rank 1 not rank 0
            ranks.append(rank)

    #logger.info('Ranking done for all queries')
    return ranks, total_nums
    
    
def evaluation(model, queries,
                valid_filters:Dict[str, Dict[Tuple[str, int], torch.Tensor]],
                device, batch_size, entityid_to_nodetype, exists_edge, eval_type = '', attack_data = None, ori_ranks = None, ori_totals = None):
    
    #get ranking
    ranks, total_nums = get_ranking(model, queries, valid_filters, device, batch_size, entityid_to_nodetype, exists_edge)
    ranks, total_nums = np.array(ranks), np.array(total_nums)
    # print(ranks)
    # print(total_nums)
    # print(ranks)
    # print(total_nums)

    ranks = total_nums - ranks

    if (attack_data is not None):
        for i, tri in enumerate(attack_data):
            if args.mode == '':
                if args.added_edge_num == '' or int(args.added_edge_num) == 1:
                    if int(tri[0]) == -1:
                        ranks[i] = ori_ranks[i]
                        total_nums[i] = ori_totals[i]
                else:
                    if int(tri[0][0]) == -1:
                        ranks[i] = ori_ranks[i]
                        total_nums[i] = ori_totals[i]
            else:
                if len(tri) == 0:
                    ranks[i] = ori_ranks[i]
                    total_nums[i] = ori_totals[i]

    mean = (ranks / total_nums).mean()
    std = (ranks / total_nums).std()
    #final logging
    hits_at = np.arange(1,11)
    hits_at_both = list(map(lambda x: np.mean((ranks <= x), dtype=np.float64).item(), 
                                      hits_at))
    mr = np.mean(ranks, dtype=np.float64).item()
    
    mrr = np.mean(1. / ranks, dtype=np.float64).item()
    
    logger.info('')
    logger.info('-'*50)
    # logger.info(split+'_'+save_name)
    logger.info('')
    if eval_type:
        logger.info(eval_type)
    else:
        logger.info('after attck')

    for i in hits_at:
        logger.info('Hits @{0}: {1}'.format(i, hits_at_both[i-1]))
    logger.info('Mean rank: {0}'.format( mr))
    logger.info('Mean reciprocal rank lhs: {0}'.format(mrr))
    logger.info('Mean proportion: {0}'.format(mean))
    logger.info('Std proportion: {0}'.format(std))
    logger.info('Mean candidate num: {0}'.format(np.mean(total_nums)))
    
#     with open(os.path.join('results', split + '_' + save_name + '.txt'), 'a') as text_file:
#         text_file.write('Epoch: {0}\n'.format(epoch))
#         text_file.write('Lhs denotes ranking by subject corruptions \n')
#         text_file.write('Rhs denotes ranking by object corruptions \n')
#         for i in hits_at:
#             text_file.write('Hits left @{0}: {1}\n'.format(i, hits_at_lhs[i-1]))
#             text_file.write('Hits right @{0}: {1}\n'.format(i, hits_at_rhs[i-1]))
#             text_file.write('Hits @{0}: {1}\n'.format(i, np.mean([hits_at_lhs[i-1],hits_at_rhs[i-1]]).item()))
#         text_file.write('Mean rank lhs: {0}\n'.format( mr_lhs))
#         text_file.write('Mean rank rhs: {0}\n'.format(mr_rhs))
#         text_file.write('Mean rank: {0}\n'.format( np.mean([mr_lhs, mr_rhs])))
#         text_file.write('MRR lhs: {0}\n'.format( mrr_lhs))
#         text_file.write('MRR rhs: {0}\n'.format(mrr_rhs))
#         text_file.write('MRR: {0}\n'.format(np.mean([mrr_rhs, mrr_lhs])))
#         text_file.write('-------------------------------------------------\n')
        
        
    results = {}
    for i in hits_at:
        results['hits @{}'.format(i)] = hits_at_both[i-1]
    results['mrr'] = mrr
    results['mr'] = mr
    results['proportion'] = mean
    results['std'] = std
    
    return results, list(ranks), list(total_nums)


parser = utils.get_argument_parser()
parser = utils.add_attack_parameters(parser)
parser = utils.add_eval_parameters(parser)
args = parser.parse_args()
args = utils.set_hyperparams(args)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
utils.seed_all(args.seed)
np.set_printoptions(precision=5)
cudnn.benchmark = False
   
data_path = os.path.join('processed_data', args.data)
target_path = os.path.join(data_path, 'DD_target_{0}_{1}_{2}_{3}_{4}_{5}.txt'.format(args.model, args.data, args.target_split, args.target_size, 'exists:'+str(args.target_existed), args.attack_goal))

log_path = 'logs/evaluation_logs/cos_{0}_{1}_{2}_{3}_{4}_{5}_{6}_{7}{8}'.format(args.model, 
                                                            args.target_split, 
                                                            args.target_size, 
                                                            'exists:'+str(args.target_existed),
                                                            args.neighbor_num,
                                                            args.candidate_mode,
                                                            args.attack_goal,
                                                            str(args.reasonable_rate),
                                                            args.mode)
record_path = 'eval_record/{0}_{1}_{2}_{3}_{4}_{5}_{6}_{7}{8}{9}{10}'.format(args.model, 
                                                            args.target_split, 
                                                            args.target_size, 
                                                            'exists:'+str(args.target_existed),
                                                            args.neighbor_num,
                                                            args.candidate_mode,
                                                            args.attack_goal,
                                                            str(args.reasonable_rate),
                                                            args.mode,
                                                            str(args.added_edge_num),
                                                            args.mask_ratio)
init_record_path = 'eval_record/{0}_{1}_{2}_{3}_{4}_{5}_{6}_{7}{8}'.format(args.model, 
                                                            args.target_split, 
                                                            args.target_size, 
                                                            'exists:'+str(args.target_existed),
                                                            args.neighbor_num,
                                                            args.candidate_mode,
                                                            args.attack_goal,
                                                            str(args.reasonable_rate),
                                                            'init')

if args.seperate:
    record_path += '_seperate'
    log_path += '_seperate'
else:
    record_path += '_batch'

if args.direct:
    log_path += '_direct'
    record_path += '_direct'
else:
    log_path += '_nodirect'
    record_path += '_nodirect'

dis_turbrbed_path_pre = os.path.join(data_path, 'evaluation')
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                            datefmt = '%m/%d/%Y %H:%M:%S',
                            level = logging.INFO,
                            filename = log_path
                           )
logger = logging.getLogger(__name__)
logger.info(vars(args))

n_ent, n_rel, ent_to_id, rel_to_id = utils.generate_dicts(data_path)
model_name = '{0}_{1}_{2}_{3}_{4}'.format(args.model, args.embedding_dim, args.input_drop, args.hidden_drop, args.feat_drop)
model_path = 'saved_models/{0}_{1}.model'.format(args.data, model_name)
model = utils.load_model(model_path, args, n_ent, n_rel, device)

ori_data  = utils.load_data(os.path.join(data_path, 'all.txt'))
target_data = utils.load_data(target_path)

index = range(len(target_data))
index = np.random.permutation(index)
target_data = target_data[index]

if args.direct:
    assert args.attack_goal == 'single'
    raise Exception('This option is abandoned in this version .')
    # disturbed_data = list(ori_data) + list(target_data)
else:
    
    attack_path = os.path.join('attack_results', args.data, 'cos_{0}_{1}_{2}_{3}_{4}_{5}_{6}_{7}{8}{9}{10}.txt'.format(args.model, 
                                                            args.target_split, 
                                                            args.target_size, 
                                                            'exists:'+str(args.target_existed),
                                                            args.neighbor_num,
                                                            args.candidate_mode,
                                                            args.attack_goal,
                                                            str(args.reasonable_rate),
                                                            args.mode,
                                                            str(args.added_edge_num),
                                                            args.mask_ratio))
    if args.mode == '':
        attack_data = utils.load_data(attack_path, drop=False)
        if not(args.added_edge_num == '' or int(args.added_edge_num) == 1):
            assert int(args.added_edge_num) * len(target_data) == len(attack_data)
            attack_data = attack_data.reshape((len(target_data), int(args.added_edge_num), 3))
            attack_data = attack_data[index]
        else:
            assert len(target_data) == len(attack_data)
            attack_data = attack_data[index]
        # if not args.seperate:
        #     disturbed_data = list(ori_data) + list(attack_data)
    else:
        with open(attack_path, 'rb') as fl:
            attack_data = pkl.load(fl)

        tmp_attack_data = []
        for vv in attack_data:
            a_attack = []
            for v in vv:
                if check(v, model, args.reasonable_rate, device):
                     a_attack.append(v)
            tmp_attack_data.append(a_attack)
        attack_data = tmp_attack_data
        attack_data = [attack_data[i] for i in index]

        # if not args.seperate:
        #     disturbed_data = list(ori_data)
        #     if args.mode == '':
        #         for aa in list(attack_data):
        #             if int(aa[0]) != -1:
        #                 disturbed_data.append(aa)
        #     else:
        #         for vv in attack_data:
        #             for v in vv:
        #                 disturbed_data.append(v)

with open(os.path.join(data_path, 'filter.pickle'), 'rb') as fl:
    valid_filters = pkl.load(fl)
with open(os.path.join(data_path, 'entityid_to_nodetype.json'), 'r') as fl:
    entityid_to_nodetype = json.load(fl)
with open(Parameters.GNBRfile+'entity_raw_name', 'rb') as fl:
    entity_raw_name = pkl.load(fl)
with open(os.path.join(data_path, 'disease_meshid.pickle'), 'rb') as fl:
    disease_meshid = pkl.load(fl)
with open(os.path.join(data_path, 'entities_dict.json'), 'r') as fl:
    entity_to_id = json.load(fl)

if args.attack_goal == 'global':
    raise Exception('Please refer to pagerank method in global setting.')
    # target_disease = []
    # tid = 1
    # bound = 50
    # while True:
    #     meshid = disease_meshid[tid][0]
    #     fre = disease_meshid[tid][1]
    #     if len(entity_raw_name[meshid]) > 4:
    #         target_disease.append(entity_to_id[meshid])
    #         bound -= 1
    #         if bound == 0:
    #             break
    #     tid += 1
    # s_set = set()
    # for s, r, o in target_data:
    #     s_set.add(s)
    # target_data = list(s_set)
    # target_data.sort()

    # target_list = []
    # for s in target_data:
    #     for o in target_disease:
    #         target_list.append([str(s), str(10), str(o)])
    # target_data = np.array(target_list, dtype = str)

init_mask = np.asarray([0] * n_ent).astype('int64')
init_mask = (init_mask == 1)
for k, v in valid_filters.items():
    for kk, vv in v.items():
        tmp = init_mask.copy()
        tmp[np.asarray(vv)] = True
        t = torch.ByteTensor(tmp).to(device)
        valid_filters[k][kk] = t
# print('what??', valid_filters['lhs'][('disease', 10)].sum())

exists_edge = {'lhs':{}, 'rhs':{}}
for s, r, o in ori_data:
    if s not in exists_edge['rhs'].keys():
        exists_edge['rhs'][s] = []
    if o not in exists_edge['lhs'].keys():
        exists_edge['lhs'][o] = []
    exists_edge['rhs'][s].append(int(o))
    exists_edge['lhs'][o].append(int(s))
target_data = torch.from_numpy(target_data.astype('int64')).to(device)
# print(target_data[:5, :])
ori_results, ori_ranks, ori_totals = evaluation(model, target_data, valid_filters, device, args.test_batch_size, entityid_to_nodetype, exists_edge, 'original')
print('Original:', ori_results)
with open(init_record_path, 'wb') as fl:
    pkl.dump([ori_results, ori_ranks, ori_totals], fl)

# raise Exception('Check Original Rank!!!')

thread_name = args.model+'_'+args.target_split+'_'+args.attack_goal+'_'+str(args.reasonable_rate)+str(args.added_edge_num)+str(args.mask_ratio)
if args.direct:
    thread_name += '_direct'
else:
    thread_name += '_nodirect'
if args.seperate:
    thread_name += '_seperate'
else:
    thread_name += '_batch'
thread_name += args.mode

disturbed_data_path = os.path.join(dis_turbrbed_path_pre, 'all_{}.txt'.format(thread_name))

if args.seperate:
    # assert len(attack_data) * len(target_disease) == len(target_data)
    assert len(attack_data) == len(target_data)
    # final_result = None
    Ranks = []
    Totals = []
    print('Training model {}...'.format(thread_name))
    for i in tqdm(range(len(attack_data))):
        attack_trip = attack_data[i]
        if args.mode == '':
            attack_trip = [attack_trip]
        # target = target_data[i*len(target_disease) : (i+1)*len(target_disease)]
        target = target_data[i: i+1, :]
        if len(attack_trip) > 0 and int(attack_trip[0][0]) != -1:
            disturbed_data = list(ori_data) + attack_trip
            disturbed_data = np.array(disturbed_data)
            utils.save_data(disturbed_data_path, disturbed_data)

            cmd = 'CUDA_VISIBLE_DEVICES={} python main_multiprocess.py --data {} --model {} --thread-name {}'.format(args.cuda_name,args.data, args.model, thread_name)
            os.system(cmd)
            model_name = '{0}_{1}_{2}_{3}_{4}_{5}'.format(args.model, args.embedding_dim, args.input_drop, args.hidden_drop, args.feat_drop, thread_name)
            model_path = 'saved_models/evaluation/{0}_{1}.model'.format(args.data, model_name)
            model = utils.load_model(model_path, args, n_ent, n_rel, device)
            a_results, a_ranks, a_total_nums = evaluation(model, target, valid_filters, device, args.test_batch_size, entityid_to_nodetype, exists_edge)
            assert len(a_ranks) == 1
            if not final_result:
                final_result = a_results
            else:
                for k in final_result.keys():
                    final_result[k] += a_results[k]
            Ranks += a_ranks
            Totals += a_total_nums
        else:
            Ranks += [ori_ranks[i]]
            Totals += [ori_totals[i]]
            final_result['proportion'] += ori_ranks[i] / ori_totals[i]
    for k in final_result.keys():
        final_result[k] /= attack_data.shape[0]
    print('Final !!!')
    print(final_result)
    logger.info('Final !!!!')
    for k, v in final_result.items():
        logger.info('{} : {}'.format(k, v))
    tmp = np.array(Ranks) / np.array(Totals)
    print('Std:', np.std(tmp))
    with open(record_path, 'wb') as fl:
        pkl.dump([final_result, Ranks, Totals], fl)

else:
    assert len(target_data) == len(attack_data)
    print('Attack shape:'   , len(attack_data))
    Results = []
    Ranks = []
    Totals = []
    for l in range(0, len(target_data), 50):
        r = min(l+50, len(target_data))
        t_target_data = target_data[l:r]
        t_attack_data = attack_data[l:r]
        t_ori_ranks = ori_ranks[l:r]
        t_ori_totals = ori_totals[l:r]
        if args.mode == '':
            if not(args.added_edge_num == '' or int(args.added_edge_num) == 1):
                tt_attack_data = []
                for vv in t_attack_data:
                    tt_attack_data += list(vv)
                t_attack_data = tt_attack_data
        else:
            assert args.mode == 'sentence' or args.mode == 'bioBART'
            tt_attack_data = []
            for vv in t_attack_data:
                tt_attack_data += vv
            t_attack_data = tt_attack_data
        disturbed_data = list(ori_data) + list(t_attack_data)


        utils.save_data(disturbed_data_path, disturbed_data)
        cmd = 'CUDA_VISIBLE_DEVICES={} python main_multiprocess.py --data {} --model {} --thread-name {}'.format(args.cuda_name,args.data, args.model, thread_name)
        print('Training model {}...'.format(thread_name))
        os.system(cmd)
        model_name = '{0}_{1}_{2}_{3}_{4}_{5}'.format(args.model, args.embedding_dim, args.input_drop, args.hidden_drop, args.feat_drop, thread_name)
        model_path = 'saved_models/evaluation/{0}_{1}.model'.format(args.data, model_name)
        model = utils.load_model(model_path, args, n_ent, n_rel, device)
        a_results, a_ranks, a_totals = evaluation(model, t_target_data, valid_filters, device, args.test_batch_size, entityid_to_nodetype, exists_edge, attack_data = attack_data[l:r], ori_ranks = t_ori_ranks, ori_totals = t_ori_totals)
        print(f'************Current l: {l}\n', a_results)
        assert len(a_ranks) == t_target_data.shape[0]
        Results += [a_results]
        Ranks += list(a_ranks)
        Totals += list(a_totals)
    with open(record_path, 'wb') as fl:
        pkl.dump([Results, Ranks, Totals, index], fl)