Spaces:
Running
Running
File size: 16,508 Bytes
ac7c391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
#%%
import pickle as pkl
from typing import Dict, Tuple, List
import os
import numpy as np
import json
import logging
import argparse
import math
from pprint import pprint
import pandas as pd
from collections import defaultdict
import copy
import time
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
import torch.autograd as autograd
from model import Distmult, Complex, Conve
import utils
# from evaluation import evaluation
#%%
class Main(object):
def __init__(self, args):
self.args = args
self.model_name = '{0}_{1}_{2}_{3}_{4}'.format(args.model, args.embedding_dim, args.input_drop, args.hidden_drop, args.feat_drop)
#leaving batches from the model_name since they do not depend on model_architecture
# also leaving kernel size and filters, siinice don't intend to change those
self.model_path = 'saved_models/{0}_{1}.model'.format(args.data, self.model_name)
self.log_path = 'logs/{0}_{1}_{2}_{3}.log'.format(args.data, self.model_name, args.epochs, args.train_batch_size)
self.loss_path = 'losses/{0}_{1}_{2}_{3}.pickle'.format(args.data, self.model_name, args.epochs, args.train_batch_size)
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO,
filename = self.log_path)
self.logger = logging.getLogger(__name__)
self.logger.info(vars(self.args))
self.logger.info('\n')
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.load_data()
self.model = self.add_model()
self.optimizer = self.add_optimizer(self.model.parameters())
if self.args.save_influence_map:
self.logger.info('-------- Argument save_influence_map is set. Will use GR to compute and save influence maps ----------\n')
# when we want to save influence during training
self.args.add_reciprocals = False # to keep things simple
# init an empty influence map
self.influence_map = defaultdict(float)
#self.influence_path = 'influence_maps/{0}_{1}.json'.format(args.data, self.model_name)
self.influence_path = 'influence_maps/{0}_{1}.pickle'.format(args.data, self.model_name)
# Initialize a copy of the model prams to track previous weights in an epoch
self.previous_weights = [copy.deepcopy(param) for param in self.model.parameters()]
self.logger.info('Shape for previous weights: {}, {}'.format(self.previous_weights[0].shape, self.previous_weights[1].shape))
def load_data(self):
'''
Load the train, valid datasets
'''
data_path = os.path.join('processed_data', self.args.data)
n_ent, n_rel, ent_to_id, rel_to_id = utils.generate_dicts(data_path)
self.n_ent = n_ent
self.n_rel = n_rel
self.train_data = utils.load_data(os.path.join(data_path, 'all.txt'))
# print(type(self.train_data), self.train_data.shape) #(1996432, 3)
tmp = np.random.choice(a = self.train_data.shape[0], size = int(self.train_data.shape[0] * self.args.KG_valid_rate), replace=False)
self.valid_data= self.train_data[tmp, :]
def add_model(self):
if self.args.model is None:
model = Distmult(self.args, self.n_ent, self.n_rel)
elif self.args.model == 'distmult':
model = Distmult(self.args, self.n_ent, self.n_rel)
elif self.args.model == 'complex':
model = Complex(self.args, self.n_ent, self.n_rel)
elif self.args.model == 'conve':
model = Conve(self.args, self.n_ent, self.n_rel)
else:
self.logger.info('Unknown model: {0}', self.args.model)
raise Exception("Unknown model!")
model.to(self.device)
return model
def add_optimizer(self, parameters):
return torch.optim.Adam(parameters, lr=self.args.lr, weight_decay=self.args.lr_decay)
def save_model(self):
state = {
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'args': vars(self.args)
}
torch.save(state, self.model_path)
self.logger.info('Saving model to {0}'.format(self.model_path))
def load_model(self):
self.logger.info('Loading saved model from {0}'.format(self.model_path))
state = torch.load(self.model_path)
model_params = state['state_dict']
params = [(key, value.size(), value.numel()) for key, value in model_params.items()]
for key, size, count in params:
self.logger.info(key, size, count)
self.model.load_state_dict(model_params)
self.optimizer.load_state_dict(state['optimizer'])
def lp_regularizer(self):
# Apply p-norm regularization; assign weights to each param
weight = self.args.reg_weight
p = self.args.reg_norm
trainable_params = [self.model.emb_e.weight, self.model.emb_rel.weight]
norm = 0
for i in range(len(trainable_params)):
#norm += weight * trainable_params[i].norm(p = p)**p
norm += weight * torch.sum( torch.abs(trainable_params[i]) ** p)
return norm
def n3_regularizer(self, factors):
# factors are the embeddings for lhs, rel, rhs for triples in a batch
weight = self.args.reg_weight
p = self.args.reg_norm
norm = 0
for f in factors:
norm += weight * torch.sum(torch.abs(f) ** p)
return norm / factors[0].shape[0] # scale by number of triples in batch
def get_influence_map(self):
"""
Turns the influence map into a list, ready to be written to disc. (before: numpy)
:return: the influence map with lists as values
"""
assert self.args.save_influence_map == True
for key in self.influence_map:
self.influence_map[key] = self.influence_map[key].tolist()
#self.logger.info('get_influence_map passed')
return self.influence_map
def evaluate(self, split, batch_size, epoch):
"""
The same as self.run_epoch()
"""
self.model.eval()
losses = []
with torch.no_grad():
input_data = torch.from_numpy(self.valid_data.astype('int64'))
actual_examples = input_data[torch.randperm(input_data.shape[0]), :]
del input_data
batch_size = self.args.valid_batch_size
for b_begin in tqdm(range(0, actual_examples.shape[0], batch_size)):
input_batch = actual_examples[b_begin: b_begin + batch_size]
input_batch = input_batch.to(self.device)
s,r,o = input_batch[:,0], input_batch[:,1], input_batch[:,2]
emb_s = self.model.emb_e(s).squeeze(dim=1)
emb_r = self.model.emb_rel(r).squeeze(dim=1)
emb_o = self.model.emb_e(o).squeeze(dim=1)
if self.args.add_reciprocals:
r_rev = r + self.n_rel
emb_rrev = self.model.emb_rel(r_rev).squeeze(dim=1)
else:
r_rev = r
emb_rrev = emb_r
pred_sr = self.model.forward(emb_s, emb_r, mode='rhs')
loss_sr = self.model.loss(pred_sr, o) # cross entropy loss
pred_or = self.model.forward(emb_o, emb_rrev, mode='lhs')
loss_or = self.model.loss(pred_or, s)
total_loss = loss_sr + loss_or
if (self.args.reg_weight != 0.0 and self.args.reg_norm == 3):
#self.logger.info('Computing regularizer weight')
if self.args.model == 'complex':
emb_dim = self.args.embedding_dim #int(self.args.embedding_dim/2)
lhs = (emb_s[:, :emb_dim], emb_s[:, emb_dim:])
rel = (emb_r[:, :emb_dim], emb_r[:, emb_dim:])
rel_rev = (emb_rrev[:, :emb_dim], emb_rrev[:, emb_dim:])
rhs = (emb_o[:, :emb_dim], emb_o[:, emb_dim:])
#print(lhs[0].shape, lhs[1].shape)
factors_sr = (torch.sqrt(lhs[0] ** 2 + lhs[1] ** 2),
torch.sqrt(rel[0] ** 2 + rel[1] ** 2),
torch.sqrt(rhs[0] ** 2 + rhs[1] ** 2)
)
factors_or = (torch.sqrt(lhs[0] ** 2 + lhs[1] ** 2),
torch.sqrt(rel_rev[0] ** 2 + rel_rev[1] ** 2),
torch.sqrt(rhs[0] ** 2 + rhs[1] ** 2)
)
else:
factors_sr = (emb_s, emb_r, emb_o)
factors_or = (emb_s, emb_rrev, emb_o)
total_loss += self.n3_regularizer(factors_sr)
total_loss += self.n3_regularizer(factors_or)
if (self.args.reg_weight != 0.0 and self.args.reg_norm == 2):
total_loss += self.lp_regularizer()
losses.append(total_loss.item())
loss = np.mean(losses)
self.logger.info('[Epoch:{}]: Validating Loss:{:.6}\n'.format(epoch, loss))
return loss
def run_epoch(self, epoch):
self.model.train()
losses = []
#shuffle the train dataset
input_data = torch.from_numpy(self.train_data.astype('int64'))
actual_examples = input_data[torch.randperm(input_data.shape[0]), :]
del input_data
batch_size = self.args.train_batch_size
for b_begin in tqdm(range(0, actual_examples.shape[0], batch_size)):
self.optimizer.zero_grad()
input_batch = actual_examples[b_begin: b_begin + batch_size]
input_batch = input_batch.to(self.device)
s,r,o = input_batch[:,0], input_batch[:,1], input_batch[:,2]
emb_s = self.model.emb_e(s).squeeze(dim=1)
emb_r = self.model.emb_rel(r).squeeze(dim=1)
emb_o = self.model.emb_e(o).squeeze(dim=1)
if self.args.add_reciprocals:
r_rev = r + self.n_rel
emb_rrev = self.model.emb_rel(r_rev).squeeze(dim=1)
else:
r_rev = r
emb_rrev = emb_r
pred_sr = self.model.forward(emb_s, emb_r, mode='rhs')
loss_sr = self.model.loss(pred_sr, o) # loss is cross entropy loss
pred_or = self.model.forward(emb_o, emb_rrev, mode='lhs')
loss_or = self.model.loss(pred_or, s)
total_loss = loss_sr + loss_or
if (self.args.reg_weight != 0.0 and self.args.reg_norm == 3):
#self.logger.info('Computing regularizer weight')
if self.args.model == 'complex':
emb_dim = self.args.embedding_dim #int(self.args.embedding_dim/2)
lhs = (emb_s[:, :emb_dim], emb_s[:, emb_dim:])
rel = (emb_r[:, :emb_dim], emb_r[:, emb_dim:])
rel_rev = (emb_rrev[:, :emb_dim], emb_rrev[:, emb_dim:])
rhs = (emb_o[:, :emb_dim], emb_o[:, emb_dim:])
#print(lhs[0].shape, lhs[1].shape)
factors_sr = (torch.sqrt(lhs[0] ** 2 + lhs[1] ** 2),
torch.sqrt(rel[0] ** 2 + rel[1] ** 2),
torch.sqrt(rhs[0] ** 2 + rhs[1] ** 2))
factors_or = (torch.sqrt(lhs[0] ** 2 + lhs[1] ** 2),
torch.sqrt(rel_rev[0] ** 2 + rel_rev[1] ** 2),
torch.sqrt(rhs[0] ** 2 + rhs[1] ** 2))
else:
factors_sr = (emb_s, emb_r, emb_o)
factors_or = (emb_s, emb_rrev, emb_o)
total_loss += self.n3_regularizer(factors_sr)
total_loss += self.n3_regularizer(factors_or)
if (self.args.reg_weight != 0.0 and self.args.reg_norm == 2):
total_loss += self.lp_regularizer()
total_loss.backward()
self.optimizer.step()
losses.append(total_loss.item())
if self.args.save_influence_map: #for gradient rollback
with torch.no_grad():
prev_emb_e = self.previous_weights[0]
prev_emb_rel = self.previous_weights[1]
# need to compute the influence value per-triple
for idx in range(input_batch.shape[0]):
head, rel, tail = s[idx], r[idx], o[idx]
inf_head = (emb_s[idx] - prev_emb_e[head]).cpu().detach().numpy()
inf_tail = (emb_o[idx] - prev_emb_e[tail]).cpu().detach().numpy()
inf_rel = (emb_r[idx] - prev_emb_rel[rel]).cpu().detach().numpy()
#print(inf_head.shape, inf_tail.shape, inf_rel.shape)
#write the influences to dictionary
key_trip = '{0}_{1}_{2}'.format(head.item(), rel.item(), tail.item())
key = '{0}_s'.format(key_trip)
self.influence_map[key] += inf_head
#self.logger.info('Written to influence map. Key: {0}, Value shape: {1}'.format(key, inf_head.shape))
key = '{0}_r'.format(key_trip)
self.influence_map[key] += inf_rel
key = '{0}_o'.format(key_trip)
self.influence_map[key] += inf_tail
# update the previous weights to be tracked
self.previous_weights = [copy.deepcopy(param) for param in self.model.parameters()]
if (b_begin%5000 == 0) or (b_begin== (actual_examples.shape[0]-1)):
self.logger.info('[E:{} | {}]: Train Loss:{:.6}'.format(epoch, b_begin, np.mean(losses)))
loss = np.mean(losses)
self.logger.info('[Epoch:{}]: Training Loss:{:.6}\n'.format(epoch, loss))
return loss
def fit(self):
self.model.init()
self.logger.info(self.model)
self.logger.info('------ Start the model training ------')
start_time = time.time()
self.logger.info('Start time: {0}'.format(str(start_time)))
train_losses = []
valid_losses = []
best_val = 10000000000.
for epoch in range(self.args.epochs):
print("="*15,'epoch:',epoch,'='*15)
train_loss = self.run_epoch(epoch)
train_losses.append(train_loss)
if train_loss < best_val:
best_val = train_loss
self.save_model()
print("Train loss: {0}, Best loss: {1}\n\n".format(train_loss, best_val))
with open(self.loss_path, "wb") as fl:
pkl.dump({"train loss":train_losses, "valid loss":valid_losses}, fl)
self.logger.info('Time taken to train the model: {0}'.format(str(time.time() - start_time)))
start_time = time.time()
if self.args.save_influence_map: #save the influence map
with open(self.influence_path, "wb") as fl: #Pickling
pkl.dump(self.get_influence_map(), fl)
self.logger.info('Finished saving influence map')
self.logger.info('Time taken to save the influence map: {0}'.format(str(time.time() - start_time)))
#%%
parser = utils.get_argument_parser()
args = parser.parse_args()
args = utils.set_hyperparams(args)
utils.seed_all(args.seed)
np.set_printoptions(precision=5)
cudnn.benchmark = False
model = Main(args)
model.fit() |