Spaces:
Running
on
Zero
Running
on
Zero
Kunpeng Song
commited on
Commit
·
b5f6f82
1
Parent(s):
7c69fc1
fix zero
Browse files- .DS_Store +0 -0
- app.py +0 -5
- dataset_lib/dataset_eval_MoMA.py +153 -2
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
app.py
CHANGED
@@ -6,7 +6,6 @@ import numpy as np
|
|
6 |
import torch
|
7 |
from pytorch_lightning import seed_everything
|
8 |
from model_lib.utils import parse_args
|
9 |
-
# from llava.mm_utils import process_image
|
10 |
|
11 |
os.environ["CUDA_VISIBLE_DEVICES"]="0"
|
12 |
|
@@ -18,10 +17,6 @@ args = parse_args()
|
|
18 |
|
19 |
model = None
|
20 |
|
21 |
-
def my_process_image(a, b, c):
|
22 |
-
# return process_image(a, b, c)
|
23 |
-
return (a, b, c)
|
24 |
-
|
25 |
@spaces.GPU
|
26 |
def inference(rgb, subject, prompt, strength, seed):
|
27 |
seed = int(seed) if seed else 0
|
|
|
6 |
import torch
|
7 |
from pytorch_lightning import seed_everything
|
8 |
from model_lib.utils import parse_args
|
|
|
9 |
|
10 |
os.environ["CUDA_VISIBLE_DEVICES"]="0"
|
11 |
|
|
|
17 |
|
18 |
model = None
|
19 |
|
|
|
|
|
|
|
|
|
20 |
@spaces.GPU
|
21 |
def inference(rgb, subject, prompt, strength, seed):
|
22 |
seed = int(seed) if seed else 0
|
dataset_lib/dataset_eval_MoMA.py
CHANGED
@@ -2,8 +2,159 @@ from PIL import Image
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from torchvision import transforms
|
5 |
-
from ..app import my_process_image
|
6 |
from rembg import remove
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def create_binary_mask(image):
|
9 |
grayscale = image.convert("L")
|
@@ -38,7 +189,7 @@ def Dataset_evaluate_MoMA(image_pil, prompt,subject, moMA_main_modal):
|
|
38 |
image_wb = image * mask + torch.ones_like(image)* (1-mask)*255
|
39 |
image_pil = Image.fromarray(image_wb.permute(1,2,0).numpy().astype(np.uint8))
|
40 |
|
41 |
-
res['llava_processed'] =
|
42 |
res['label'] = [subject]
|
43 |
return res
|
44 |
|
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from torchvision import transforms
|
|
|
5 |
from rembg import remove
|
6 |
+
import ast
|
7 |
+
import math
|
8 |
+
|
9 |
+
def select_best_resolution(original_size, possible_resolutions):
|
10 |
+
"""
|
11 |
+
Selects the best resolution from a list of possible resolutions based on the original size.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
original_size (tuple): The original size of the image in the format (width, height).
|
15 |
+
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
|
16 |
+
|
17 |
+
Returns:
|
18 |
+
tuple: The best fit resolution in the format (width, height).
|
19 |
+
"""
|
20 |
+
original_width, original_height = original_size
|
21 |
+
best_fit = None
|
22 |
+
max_effective_resolution = 0
|
23 |
+
min_wasted_resolution = float('inf')
|
24 |
+
|
25 |
+
for width, height in possible_resolutions:
|
26 |
+
scale = min(width / original_width, height / original_height)
|
27 |
+
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
|
28 |
+
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
|
29 |
+
wasted_resolution = (width * height) - effective_resolution
|
30 |
+
|
31 |
+
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
|
32 |
+
max_effective_resolution = effective_resolution
|
33 |
+
min_wasted_resolution = wasted_resolution
|
34 |
+
best_fit = (width, height)
|
35 |
+
|
36 |
+
return best_fit
|
37 |
+
|
38 |
+
|
39 |
+
def resize_and_pad_image(image, target_resolution):
|
40 |
+
"""
|
41 |
+
Resize and pad an image to a target resolution while maintaining aspect ratio.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
image (PIL.Image.Image): The input image.
|
45 |
+
target_resolution (tuple): The target resolution (width, height) of the image.
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
PIL.Image.Image: The resized and padded image.
|
49 |
+
"""
|
50 |
+
original_width, original_height = image.size
|
51 |
+
target_width, target_height = target_resolution
|
52 |
+
|
53 |
+
scale_w = target_width / original_width
|
54 |
+
scale_h = target_height / original_height
|
55 |
+
|
56 |
+
if scale_w < scale_h:
|
57 |
+
new_width = target_width
|
58 |
+
new_height = min(math.ceil(original_height * scale_w), target_height)
|
59 |
+
else:
|
60 |
+
new_height = target_height
|
61 |
+
new_width = min(math.ceil(original_width * scale_h), target_width)
|
62 |
+
|
63 |
+
# Resize the image
|
64 |
+
resized_image = image.resize((new_width, new_height))
|
65 |
+
|
66 |
+
new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0))
|
67 |
+
paste_x = (target_width - new_width) // 2
|
68 |
+
paste_y = (target_height - new_height) // 2
|
69 |
+
new_image.paste(resized_image, (paste_x, paste_y))
|
70 |
+
|
71 |
+
return new_image
|
72 |
+
|
73 |
+
|
74 |
+
def divide_to_patches(image, patch_size):
|
75 |
+
"""
|
76 |
+
Divides an image into patches of a specified size.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
image (PIL.Image.Image): The input image.
|
80 |
+
patch_size (int): The size of each patch.
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
list: A list of PIL.Image.Image objects representing the patches.
|
84 |
+
"""
|
85 |
+
patches = []
|
86 |
+
width, height = image.size
|
87 |
+
for i in range(0, height, patch_size):
|
88 |
+
for j in range(0, width, patch_size):
|
89 |
+
box = (j, i, j + patch_size, i + patch_size)
|
90 |
+
patch = image.crop(box)
|
91 |
+
patches.append(patch)
|
92 |
+
|
93 |
+
return patches
|
94 |
+
|
95 |
+
|
96 |
+
def process_anyres_image(image, processor, grid_pinpoints):
|
97 |
+
"""
|
98 |
+
Process an image with variable resolutions.
|
99 |
+
|
100 |
+
Args:
|
101 |
+
image (PIL.Image.Image): The input image to be processed.
|
102 |
+
processor: The image processor object.
|
103 |
+
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
torch.Tensor: A tensor containing the processed image patches.
|
107 |
+
"""
|
108 |
+
if type(grid_pinpoints) is list:
|
109 |
+
possible_resolutions = grid_pinpoints
|
110 |
+
else:
|
111 |
+
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
112 |
+
best_resolution = select_best_resolution(image.size, possible_resolutions)
|
113 |
+
image_padded = resize_and_pad_image(image, best_resolution)
|
114 |
+
|
115 |
+
patches = divide_to_patches(image_padded, processor.crop_size['height'])
|
116 |
+
|
117 |
+
image_original_resize = image.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
|
118 |
+
|
119 |
+
image_patches = [image_original_resize] + patches
|
120 |
+
image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0]
|
121 |
+
for image_patch in image_patches]
|
122 |
+
return torch.stack(image_patches, dim=0)
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
def expand2square(pil_img, background_color):
|
127 |
+
width, height = pil_img.size
|
128 |
+
if width == height:
|
129 |
+
return pil_img
|
130 |
+
elif width > height:
|
131 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
132 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
133 |
+
return result
|
134 |
+
else:
|
135 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
136 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
137 |
+
return result
|
138 |
+
|
139 |
+
|
140 |
+
def process_images(images, image_processor, model_cfg):
|
141 |
+
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
|
142 |
+
new_images = []
|
143 |
+
if image_aspect_ratio == 'pad':
|
144 |
+
for image in images:
|
145 |
+
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
|
146 |
+
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
147 |
+
new_images.append(image)
|
148 |
+
elif image_aspect_ratio == "anyres":
|
149 |
+
for image in images:
|
150 |
+
image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints)
|
151 |
+
new_images.append(image)
|
152 |
+
else:
|
153 |
+
return image_processor(images, return_tensors='pt')['pixel_values']
|
154 |
+
if all(x.shape == new_images[0].shape for x in new_images):
|
155 |
+
new_images = torch.stack(new_images, dim=0)
|
156 |
+
return new_images
|
157 |
+
|
158 |
|
159 |
def create_binary_mask(image):
|
160 |
grayscale = image.convert("L")
|
|
|
189 |
image_wb = image * mask + torch.ones_like(image)* (1-mask)*255
|
190 |
image_pil = Image.fromarray(image_wb.permute(1,2,0).numpy().astype(np.uint8))
|
191 |
|
192 |
+
res['llava_processed'] = process_images([image_pil], LLaVa_processor, llava_config)
|
193 |
res['label'] = [subject]
|
194 |
return res
|
195 |
|