Spaces:
Sleeping
Sleeping
import spaces | |
import os | |
import gradio as gr | |
import torch | |
import numpy as np | |
import torch | |
from pytorch_lightning import seed_everything | |
from model_lib.utils import parse_args | |
from model_lib.modules import MoMA_main_modal | |
os.environ["CUDA_VISIBLE_DEVICES"]="0" | |
title = "MoMA" | |
description = "This demo is running on Zero_GPU with 4bit quantization. Please find our project page at https://moma-adapter.github.io" | |
device = torch.device('cuda') | |
seed_everything(0) | |
args = parse_args() | |
model = MoMA_main_modal(args).to(device, dtype=torch.float16) | |
def inference(rgb, subject, prompt, strength, seed): | |
global model | |
seed = int(seed) if seed else 0 | |
seed = seed if not seed == 0 else np.random.randint(0,1000) | |
generated_image = model.generate_images(rgb, subject, prompt, strength=strength, seed=seed) | |
return generated_image | |
gr.Interface( | |
inference, | |
[gr.Image(type="pil", label="Input RGB"), | |
gr.Textbox(lines=1, label="subject"), | |
gr.Textbox(lines=1, label="Prompt"), | |
gr.Slider(minimum=0.2, maximum=1.2, step=0.1,label="Strength. Recommend: 1.0 for context editing; 0.4 for texture editing",value=1.0), | |
gr.Textbox(lines=1, label="Seed. Use 0 for a random seed")], | |
gr.Image(type="pil", label="Output"), | |
title=title, | |
description=description, | |
examples=[["example_images/newImages/3.jpg",'car','A car in autumn with falling leaves.',1.0,"6"],["example_images/newImages/3.jpg",'car','A wooden sculpture of a car on a table.',0.4,"4"],["example_images/newImages/2.jpg",'car','A car on a city road with green trees and buildings.',1.0,"4"],["example_images/newImages/03.jpg",'cat','A cat at the Grand Canyon.',1.0,"2"],["example_images/newImages/02.jpg",'dog','A dog in a spring garden with flowers.',1.0,"6"],["example_images/newImages/1.jpeg",'bird','A bird in spring with flowers.',1.0,"1"],["example_images/newImages/17.jpg",'robot','A robot in autumn mountain and lake.',1,"5"]], | |
allow_flagging='never' | |
).launch(debug=False) | |