Spaces:
Running
Running
Commit
·
88cedf6
1
Parent(s):
4782e1d
Update app.py
Browse files
app.py
CHANGED
@@ -28,7 +28,7 @@ for model_id in model_ids.keys():
|
|
28 |
pass
|
29 |
|
30 |
def infer(prompt):
|
31 |
-
|
32 |
return prompt
|
33 |
|
34 |
start_work = """async() => {
|
@@ -122,33 +122,7 @@ start_work = """async() => {
|
|
122 |
}
|
123 |
window['checkPrompt_interval'] = window.setInterval("window.checkPrompt()", 100);
|
124 |
}
|
125 |
-
|
126 |
-
/*
|
127 |
-
texts = gradioEl.querySelectorAll('textarea');
|
128 |
-
text0 = gradioEl.querySelectorAll('textarea')[0];
|
129 |
-
text1 = gradioEl.querySelectorAll('textarea')[0];
|
130 |
-
|
131 |
-
for (var i = 1; i < texts.length; i++) {
|
132 |
-
setNativeValue(texts[i], text0.value);
|
133 |
-
texts[i].dispatchEvent(new Event('input', { bubbles: true }));
|
134 |
-
}
|
135 |
-
|
136 |
-
var st = setTimeout(function() {
|
137 |
-
text1 = window['gradioEl'].querySelectorAll('textarea')[1];
|
138 |
-
console.log('do_click()_1_' + text1.value);
|
139 |
-
|
140 |
-
btns = window['gradioEl'].querySelectorAll('button');
|
141 |
-
for (var i = 0; i < btns.length; i++) {
|
142 |
-
if (btns[i].innerText == 'Submit') {
|
143 |
-
btns[i].focus();
|
144 |
-
btns[i].click();
|
145 |
-
//break;
|
146 |
-
}
|
147 |
-
}
|
148 |
-
console.log('do_click()_3_');
|
149 |
-
}, 10);
|
150 |
-
*/
|
151 |
-
|
152 |
return false;
|
153 |
}"""
|
154 |
|
@@ -173,76 +147,6 @@ with gr.Blocks(title='Text to Image') as demo:
|
|
173 |
|
174 |
submit_btn.click(fn=infer, inputs=[prompt_input0], outputs=[prompt_input1])
|
175 |
|
176 |
-
# prompt_input = gr.Textbox(lines=4, label="Input prompt")
|
177 |
-
# tab_demo = gr.TabbedInterface([sd15_demo, sd20_demo, openjourney_demo], ["stable-diffusion-v1-5", "stable-diffusion-2", "openjourney"])
|
178 |
-
|
179 |
-
# demo = gr.Interface(fn=infer,
|
180 |
-
# inputs=[prompt_input],
|
181 |
-
# outputs=[tab_demo],
|
182 |
-
# )
|
183 |
-
|
184 |
if __name__ == "__main__":
|
185 |
demo.launch()
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
# import os
|
190 |
-
# os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
|
191 |
-
# from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy
|
192 |
-
|
193 |
-
# import gradio as gr
|
194 |
-
# import PIL.Image
|
195 |
-
# import numpy as np
|
196 |
-
# import random
|
197 |
-
# import torch
|
198 |
-
# import subprocess
|
199 |
-
|
200 |
-
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
201 |
-
# # print('Using device:', device)
|
202 |
-
|
203 |
-
# HF_TOKEN_SD=os.environ.get('HF_TOKEN_SD')
|
204 |
-
|
205 |
-
# if 0==0:
|
206 |
-
# model_id = "runwayml/stable-diffusion-v1-5"
|
207 |
-
|
208 |
-
# model_id = "prompthero/openjourney"
|
209 |
-
|
210 |
-
# # pipeClass = StableDiffusionImg2ImgPipeline
|
211 |
-
# pipeClass = StableDiffusionPipeline
|
212 |
-
# className = pipeClass.__name__
|
213 |
-
# if className == 'StableDiffusionInpaintPipeline':
|
214 |
-
# model_id = "runwayml/stable-diffusion-inpainting"
|
215 |
-
|
216 |
-
# sd_pipe = pipeClass.from_pretrained(
|
217 |
-
# model_id,
|
218 |
-
# # revision="fp16",
|
219 |
-
# torch_dtype=torch.float16,
|
220 |
-
# # use_auth_token=HF_TOKEN_SD
|
221 |
-
# ) # .to(device)
|
222 |
-
|
223 |
-
# def predict(prompt, steps=100, seed=42, guidance_scale=6.0):
|
224 |
-
# #torch.cuda.empty_cache()
|
225 |
-
# # print(subprocess.check_output(["nvidia-smi"], stderr=subprocess.STDOUT).decode("utf8"))
|
226 |
-
# generator = torch.manual_seed(seed)
|
227 |
-
# images = sd_pipe([prompt],
|
228 |
-
# generator=generator,
|
229 |
-
# num_inference_steps=steps,
|
230 |
-
# eta=0.3,
|
231 |
-
# guidance_scale=guidance_scale)["sample"]
|
232 |
-
# # print(subprocess.check_output(["nvidia-smi"], stderr=subprocess.STDOUT).decode("utf8"))
|
233 |
-
# return images[0]
|
234 |
-
|
235 |
-
# random_seed = random.randint(0, 2147483647)
|
236 |
-
# gr.Interface(
|
237 |
-
# predict,
|
238 |
-
# inputs=[
|
239 |
-
# gr.inputs.Textbox(label='Prompt', default='a chalk pastel drawing of a llama wearing a wizard hat'),
|
240 |
-
# gr.inputs.Slider(1, 100, label='Inference Steps', default=50, step=1),
|
241 |
-
# gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed, step=1),
|
242 |
-
# gr.inputs.Slider(1.0, 20.0, label='Guidance Scale - how much the prompt will influence the results', default=6.0, step=0.1),
|
243 |
-
# ],
|
244 |
-
# outputs=gr.Image(shape=[256,256], type="pil", elem_id="output_image"),
|
245 |
-
# css="#output_image{width: 256px}",
|
246 |
-
# title="Text-to-Image_Latent_Diffusion",
|
247 |
-
# # description="This Spaces contains a text-to-image Latent Diffusion process for the <a href=\"https://huggingface.co/CompVis/ldm-text2im-large-256\">ldm-text2im-large-256</a> model by <a href=\"https://huggingface.co/CompVis\">CompVis</a> using the <a href=\"https://github.com/huggingface/diffusers\">diffusers library</a>. The goal of this demo is to showcase the diffusers library and you can check how the code works here. If you want the state-of-the-art experience with Latent Diffusion text-to-image check out the <a href=\"https://huggingface.co/spaces/multimodalart/latentdiffusion\">main Spaces</a>.",
|
248 |
-
# ).launch()
|
|
|
28 |
pass
|
29 |
|
30 |
def infer(prompt):
|
31 |
+
prompt = getTextTrans(prompt, source='zh', target='en') + f',{random.randint(0,sys.maxsize)}'
|
32 |
return prompt
|
33 |
|
34 |
start_work = """async() => {
|
|
|
122 |
}
|
123 |
window['checkPrompt_interval'] = window.setInterval("window.checkPrompt()", 100);
|
124 |
}
|
125 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
return false;
|
127 |
}"""
|
128 |
|
|
|
147 |
|
148 |
submit_btn.click(fn=infer, inputs=[prompt_input0], outputs=[prompt_input1])
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
if __name__ == "__main__":
|
151 |
demo.launch()
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|