Text-human / Text2Human /data /pose_attr_dataset.py
yitianlian's picture
update demo
24be7a2
import os
import os.path
import random
import numpy as np
import torch
import torch.utils.data as data
from PIL import Image
class DeepFashionAttrPoseDataset(data.Dataset):
def __init__(self,
pose_dir,
texture_ann_dir,
shape_ann_path,
downsample_factor=2,
xflip=False):
self._densepose_path = pose_dir
self._image_fnames_target = []
self._image_fnames = []
self.upper_fused_attrs = []
self.lower_fused_attrs = []
self.outer_fused_attrs = []
self.shape_attrs = []
self.downsample_factor = downsample_factor
self.xflip = xflip
# load attributes
assert os.path.exists(f'{texture_ann_dir}/upper_fused.txt')
for idx, row in enumerate(
open(os.path.join(f'{texture_ann_dir}/upper_fused.txt'), 'r')):
annotations = row.split()
self._image_fnames_target.append(annotations[0])
self._image_fnames.append(f'{annotations[0].split(".")[0]}.png')
self.upper_fused_attrs.append(int(annotations[1]))
assert len(self._image_fnames_target) == len(self.upper_fused_attrs)
assert os.path.exists(f'{texture_ann_dir}/lower_fused.txt')
for idx, row in enumerate(
open(os.path.join(f'{texture_ann_dir}/lower_fused.txt'), 'r')):
annotations = row.split()
assert self._image_fnames_target[idx] == annotations[0]
self.lower_fused_attrs.append(int(annotations[1]))
assert len(self._image_fnames_target) == len(self.lower_fused_attrs)
assert os.path.exists(f'{texture_ann_dir}/outer_fused.txt')
for idx, row in enumerate(
open(os.path.join(f'{texture_ann_dir}/outer_fused.txt'), 'r')):
annotations = row.split()
assert self._image_fnames_target[idx] == annotations[0]
self.outer_fused_attrs.append(int(annotations[1]))
assert len(self._image_fnames_target) == len(self.outer_fused_attrs)
assert os.path.exists(shape_ann_path)
for idx, row in enumerate(open(os.path.join(shape_ann_path), 'r')):
annotations = row.split()
assert self._image_fnames_target[idx] == annotations[0]
self.shape_attrs.append([int(i) for i in annotations[1:]])
def _open_file(self, path_prefix, fname):
return open(os.path.join(path_prefix, fname), 'rb')
def _load_densepose(self, raw_idx):
fname = self._image_fnames[raw_idx]
fname = f'{fname[:-4]}_densepose.png'
with self._open_file(self._densepose_path, fname) as f:
densepose = Image.open(f)
if self.downsample_factor != 1:
width, height = densepose.size
width = width // self.downsample_factor
height = height // self.downsample_factor
densepose = densepose.resize(
size=(width, height), resample=Image.NEAREST)
# channel-wise IUV order, [3, H, W]
densepose = np.array(densepose)[:, :, 2:].transpose(2, 0, 1)
return densepose.astype(np.float32)
def __getitem__(self, index):
pose = self._load_densepose(index)
shape_attr = self.shape_attrs[index]
shape_attr = torch.LongTensor(shape_attr)
if self.xflip and random.random() > 0.5:
pose = pose[:, :, ::-1].copy()
upper_fused_attr = self.upper_fused_attrs[index]
lower_fused_attr = self.lower_fused_attrs[index]
outer_fused_attr = self.outer_fused_attrs[index]
pose = pose / 12. - 1
return_dict = {
'densepose': pose,
'img_name': self._image_fnames_target[index],
'shape_attr': shape_attr,
'upper_fused_attr': upper_fused_attr,
'lower_fused_attr': lower_fused_attr,
'outer_fused_attr': outer_fused_attr,
}
return return_dict
def __len__(self):
return len(self._image_fnames)