Spaces:
Runtime error
Runtime error
import datetime | |
import logging | |
import time | |
class MessageLogger(): | |
"""Message logger for printing. | |
Args: | |
opt (dict): Config. It contains the following keys: | |
name (str): Exp name. | |
logger (dict): Contains 'print_freq' (str) for logger interval. | |
train (dict): Contains 'niter' (int) for total iters. | |
use_tb_logger (bool): Use tensorboard logger. | |
start_iter (int): Start iter. Default: 1. | |
tb_logger (obj:`tb_logger`): Tensorboard logger. Default: None. | |
""" | |
def __init__(self, opt, start_iter=1, tb_logger=None): | |
self.exp_name = opt['name'] | |
self.interval = opt['print_freq'] | |
self.start_iter = start_iter | |
self.max_iters = opt['max_iters'] | |
self.use_tb_logger = opt['use_tb_logger'] | |
self.tb_logger = tb_logger | |
self.start_time = time.time() | |
self.logger = get_root_logger() | |
def __call__(self, log_vars): | |
"""Format logging message. | |
Args: | |
log_vars (dict): It contains the following keys: | |
epoch (int): Epoch number. | |
iter (int): Current iter. | |
lrs (list): List for learning rates. | |
time (float): Iter time. | |
data_time (float): Data time for each iter. | |
""" | |
# epoch, iter, learning rates | |
epoch = log_vars.pop('epoch') | |
current_iter = log_vars.pop('iter') | |
lrs = log_vars.pop('lrs') | |
message = (f'[{self.exp_name[:5]}..][epoch:{epoch:3d}, ' | |
f'iter:{current_iter:8,d}, lr:(') | |
for v in lrs: | |
message += f'{v:.3e},' | |
message += ')] ' | |
# time and estimated time | |
if 'time' in log_vars.keys(): | |
iter_time = log_vars.pop('time') | |
data_time = log_vars.pop('data_time') | |
total_time = time.time() - self.start_time | |
time_sec_avg = total_time / (current_iter - self.start_iter + 1) | |
eta_sec = time_sec_avg * (self.max_iters - current_iter - 1) | |
eta_str = str(datetime.timedelta(seconds=int(eta_sec))) | |
message += f'[eta: {eta_str}, ' | |
message += f'time: {iter_time:.3f}, data_time: {data_time:.3f}] ' | |
# other items, especially losses | |
for k, v in log_vars.items(): | |
message += f'{k}: {v:.4e} ' | |
# tensorboard logger | |
if self.use_tb_logger and 'debug' not in self.exp_name: | |
self.tb_logger.add_scalar(k, v, current_iter) | |
self.logger.info(message) | |
def init_tb_logger(log_dir): | |
from torch.utils.tensorboard import SummaryWriter | |
tb_logger = SummaryWriter(log_dir=log_dir) | |
return tb_logger | |
def get_root_logger(logger_name='base', log_level=logging.INFO, log_file=None): | |
"""Get the root logger. | |
The logger will be initialized if it has not been initialized. By default a | |
StreamHandler will be added. If `log_file` is specified, a FileHandler will | |
also be added. | |
Args: | |
logger_name (str): root logger name. Default: base. | |
log_file (str | None): The log filename. If specified, a FileHandler | |
will be added to the root logger. | |
log_level (int): The root logger level. Note that only the process of | |
rank 0 is affected, while other processes will set the level to | |
"Error" and be silent most of the time. | |
Returns: | |
logging.Logger: The root logger. | |
""" | |
logger = logging.getLogger(logger_name) | |
# if the logger has been initialized, just return it | |
if logger.hasHandlers(): | |
return logger | |
format_str = '%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s' | |
logging.basicConfig(format=format_str, level=log_level) | |
if log_file is not None: | |
file_handler = logging.FileHandler(log_file, 'w') | |
file_handler.setFormatter(logging.Formatter(format_str)) | |
file_handler.setLevel(log_level) | |
logger.addHandler(file_handler) | |
return logger | |