Spaces:
Runtime error
Runtime error
import logging | |
import math | |
from collections import OrderedDict | |
import mmcv | |
import numpy as np | |
import torch | |
from torchvision.utils import save_image | |
from models.archs.fcn_arch import FCNHead | |
from models.archs.shape_attr_embedding_arch import ShapeAttrEmbedding | |
from models.archs.unet_arch import ShapeUNet | |
from models.losses.accuracy import accuracy | |
from models.losses.cross_entropy_loss import CrossEntropyLoss | |
logger = logging.getLogger('base') | |
class ParsingGenModel(): | |
"""Paring Generation model. | |
""" | |
def __init__(self, opt): | |
self.opt = opt | |
self.device = torch.device('cuda') | |
self.is_train = opt['is_train'] | |
self.attr_embedder = ShapeAttrEmbedding( | |
dim=opt['embedder_dim'], | |
out_dim=opt['embedder_out_dim'], | |
cls_num_list=opt['attr_class_num']).to(self.device) | |
self.parsing_encoder = ShapeUNet( | |
in_channels=opt['encoder_in_channels']).to(self.device) | |
self.parsing_decoder = FCNHead( | |
in_channels=opt['fc_in_channels'], | |
in_index=opt['fc_in_index'], | |
channels=opt['fc_channels'], | |
num_convs=opt['fc_num_convs'], | |
concat_input=opt['fc_concat_input'], | |
dropout_ratio=opt['fc_dropout_ratio'], | |
num_classes=opt['fc_num_classes'], | |
align_corners=opt['fc_align_corners'], | |
).to(self.device) | |
self.init_training_settings() | |
self.palette = [[0, 0, 0], [255, 250, 250], [220, 220, 220], | |
[250, 235, 215], [255, 250, 205], [211, 211, 211], | |
[70, 130, 180], [127, 255, 212], [0, 100, 0], | |
[50, 205, 50], [255, 255, 0], [245, 222, 179], | |
[255, 140, 0], [255, 0, 0], [16, 78, 139], | |
[144, 238, 144], [50, 205, 174], [50, 155, 250], | |
[160, 140, 88], [213, 140, 88], [90, 140, 90], | |
[185, 210, 205], [130, 165, 180], [225, 141, 151]] | |
def init_training_settings(self): | |
optim_params = [] | |
for v in self.attr_embedder.parameters(): | |
if v.requires_grad: | |
optim_params.append(v) | |
for v in self.parsing_encoder.parameters(): | |
if v.requires_grad: | |
optim_params.append(v) | |
for v in self.parsing_decoder.parameters(): | |
if v.requires_grad: | |
optim_params.append(v) | |
# set up optimizers | |
self.optimizer = torch.optim.Adam( | |
optim_params, | |
self.opt['lr'], | |
weight_decay=self.opt['weight_decay']) | |
self.log_dict = OrderedDict() | |
self.entropy_loss = CrossEntropyLoss().to(self.device) | |
def feed_data(self, data): | |
self.pose = data['densepose'].to(self.device) | |
self.attr = data['attr'].to(self.device) | |
self.segm = data['segm'].to(self.device) | |
def optimize_parameters(self): | |
self.attr_embedder.train() | |
self.parsing_encoder.train() | |
self.parsing_decoder.train() | |
self.attr_embedding = self.attr_embedder(self.attr) | |
self.pose_enc = self.parsing_encoder(self.pose, self.attr_embedding) | |
self.seg_logits = self.parsing_decoder(self.pose_enc) | |
loss = self.entropy_loss(self.seg_logits, self.segm) | |
self.optimizer.zero_grad() | |
loss.backward() | |
self.optimizer.step() | |
self.log_dict['loss_total'] = loss | |
def get_vis(self, save_path): | |
img_cat = torch.cat([ | |
self.pose, | |
self.segm, | |
], dim=3).detach() | |
img_cat = ((img_cat + 1) / 2) | |
img_cat = img_cat.clamp_(0, 1) | |
save_image(img_cat, save_path, nrow=1, padding=4) | |
def inference(self, data_loader, save_dir): | |
self.attr_embedder.eval() | |
self.parsing_encoder.eval() | |
self.parsing_decoder.eval() | |
acc = 0 | |
num = 0 | |
for _, data in enumerate(data_loader): | |
pose = data['densepose'].to(self.device) | |
attr = data['attr'].to(self.device) | |
segm = data['segm'].to(self.device) | |
img_name = data['img_name'] | |
num += pose.size(0) | |
with torch.no_grad(): | |
attr_embedding = self.attr_embedder(attr) | |
pose_enc = self.parsing_encoder(pose, attr_embedding) | |
seg_logits = self.parsing_decoder(pose_enc) | |
seg_pred = seg_logits.argmax(dim=1) | |
acc += accuracy(seg_logits, segm) | |
palette_label = self.palette_result(segm.cpu().numpy()) | |
palette_pred = self.palette_result(seg_pred.cpu().numpy()) | |
pose_numpy = ((pose[0] + 1) / 2. * 255.).expand( | |
3, | |
pose[0].size(1), | |
pose[0].size(2), | |
).cpu().numpy().clip(0, 255).astype(np.uint8).transpose(1, 2, 0) | |
concat_result = np.concatenate( | |
(pose_numpy, palette_pred, palette_label), axis=1) | |
mmcv.imwrite(concat_result, f'{save_dir}/{img_name[0]}') | |
self.attr_embedder.train() | |
self.parsing_encoder.train() | |
self.parsing_decoder.train() | |
return (acc / num).item() | |
def get_current_log(self): | |
return self.log_dict | |
def update_learning_rate(self, epoch): | |
"""Update learning rate. | |
Args: | |
current_iter (int): Current iteration. | |
warmup_iter (int): Warmup iter numbers. -1 for no warmup. | |
Default: -1. | |
""" | |
lr = self.optimizer.param_groups[0]['lr'] | |
if self.opt['lr_decay'] == 'step': | |
lr = self.opt['lr'] * ( | |
self.opt['gamma']**(epoch // self.opt['step'])) | |
elif self.opt['lr_decay'] == 'cos': | |
lr = self.opt['lr'] * ( | |
1 + math.cos(math.pi * epoch / self.opt['num_epochs'])) / 2 | |
elif self.opt['lr_decay'] == 'linear': | |
lr = self.opt['lr'] * (1 - epoch / self.opt['num_epochs']) | |
elif self.opt['lr_decay'] == 'linear2exp': | |
if epoch < self.opt['turning_point'] + 1: | |
# learning rate decay as 95% | |
# at the turning point (1 / 95% = 1.0526) | |
lr = self.opt['lr'] * ( | |
1 - epoch / int(self.opt['turning_point'] * 1.0526)) | |
else: | |
lr *= self.opt['gamma'] | |
elif self.opt['lr_decay'] == 'schedule': | |
if epoch in self.opt['schedule']: | |
lr *= self.opt['gamma'] | |
else: | |
raise ValueError('Unknown lr mode {}'.format(self.opt['lr_decay'])) | |
# set learning rate | |
for param_group in self.optimizer.param_groups: | |
param_group['lr'] = lr | |
return lr | |
def save_network(self, save_path): | |
"""Save networks. | |
""" | |
save_dict = {} | |
save_dict['embedder'] = self.attr_embedder.state_dict() | |
save_dict['encoder'] = self.parsing_encoder.state_dict() | |
save_dict['decoder'] = self.parsing_decoder.state_dict() | |
torch.save(save_dict, save_path) | |
def load_network(self): | |
checkpoint = torch.load(self.opt['pretrained_parsing_gen']) | |
self.attr_embedder.load_state_dict(checkpoint['embedder'], strict=True) | |
self.attr_embedder.eval() | |
self.parsing_encoder.load_state_dict( | |
checkpoint['encoder'], strict=True) | |
self.parsing_encoder.eval() | |
self.parsing_decoder.load_state_dict( | |
checkpoint['decoder'], strict=True) | |
self.parsing_decoder.eval() | |
def palette_result(self, result): | |
seg = result[0] | |
palette = np.array(self.palette) | |
assert palette.shape[1] == 3 | |
assert len(palette.shape) == 2 | |
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) | |
for label, color in enumerate(palette): | |
color_seg[seg == label, :] = color | |
# convert to BGR | |
color_seg = color_seg[..., ::-1] | |
return color_seg | |