Text-human / Text2Human /data /segm_attr_dataset.py
yitianlian's picture
update demo
24be7a2
raw
history blame
6.09 kB
import os
import os.path
import random
import numpy as np
import torch
import torch.utils.data as data
from PIL import Image
class DeepFashionAttrSegmDataset(data.Dataset):
def __init__(self,
img_dir,
segm_dir,
pose_dir,
ann_dir,
downsample_factor=2,
xflip=False):
self._img_path = img_dir
self._densepose_path = pose_dir
self._segm_path = segm_dir
self._image_fnames = []
self.upper_fused_attrs = []
self.lower_fused_attrs = []
self.outer_fused_attrs = []
self.downsample_factor = downsample_factor
self.xflip = xflip
# load attributes
assert os.path.exists(f'{ann_dir}/upper_fused.txt')
for idx, row in enumerate(
open(os.path.join(f'{ann_dir}/upper_fused.txt'), 'r')):
annotations = row.split()
self._image_fnames.append(annotations[0])
# assert self._image_fnames[idx] == annotations[0]
self.upper_fused_attrs.append(int(annotations[1]))
assert len(self._image_fnames) == len(self.upper_fused_attrs)
assert os.path.exists(f'{ann_dir}/lower_fused.txt')
for idx, row in enumerate(
open(os.path.join(f'{ann_dir}/lower_fused.txt'), 'r')):
annotations = row.split()
assert self._image_fnames[idx] == annotations[0]
self.lower_fused_attrs.append(int(annotations[1]))
assert len(self._image_fnames) == len(self.lower_fused_attrs)
assert os.path.exists(f'{ann_dir}/outer_fused.txt')
for idx, row in enumerate(
open(os.path.join(f'{ann_dir}/outer_fused.txt'), 'r')):
annotations = row.split()
assert self._image_fnames[idx] == annotations[0]
self.outer_fused_attrs.append(int(annotations[1]))
assert len(self._image_fnames) == len(self.outer_fused_attrs)
# remove the overlapping item between upper cls and lower cls
# cls 21 can appear with upper clothes
# cls 4 can appear with lower clothes
self.upper_cls = [1., 4.]
self.lower_cls = [3., 5., 21.]
self.outer_cls = [2.]
self.other_cls = [
11., 18., 7., 8., 9., 10., 12., 16., 17., 19., 20., 22., 23., 15.,
14., 13., 0., 6.
]
def _open_file(self, path_prefix, fname):
return open(os.path.join(path_prefix, fname), 'rb')
def _load_raw_image(self, raw_idx):
fname = self._image_fnames[raw_idx]
with self._open_file(self._img_path, fname) as f:
image = Image.open(f)
if self.downsample_factor != 1:
width, height = image.size
width = width // self.downsample_factor
height = height // self.downsample_factor
image = image.resize(
size=(width, height), resample=Image.LANCZOS)
image = np.array(image)
if image.ndim == 2:
image = image[:, :, np.newaxis] # HW => HWC
image = image.transpose(2, 0, 1) # HWC => CHW
return image
def _load_densepose(self, raw_idx):
fname = self._image_fnames[raw_idx]
fname = f'{fname[:-4]}_densepose.png'
with self._open_file(self._densepose_path, fname) as f:
densepose = Image.open(f)
if self.downsample_factor != 1:
width, height = densepose.size
width = width // self.downsample_factor
height = height // self.downsample_factor
densepose = densepose.resize(
size=(width, height), resample=Image.NEAREST)
# channel-wise IUV order, [3, H, W]
densepose = np.array(densepose)[:, :, 2:].transpose(2, 0, 1)
return densepose.astype(np.float32)
def _load_segm(self, raw_idx):
fname = self._image_fnames[raw_idx]
fname = f'{fname[:-4]}_segm.png'
with self._open_file(self._segm_path, fname) as f:
segm = Image.open(f)
if self.downsample_factor != 1:
width, height = segm.size
width = width // self.downsample_factor
height = height // self.downsample_factor
segm = segm.resize(
size=(width, height), resample=Image.NEAREST)
segm = np.array(segm)
segm = segm[:, :, np.newaxis].transpose(2, 0, 1)
return segm.astype(np.float32)
def __getitem__(self, index):
image = self._load_raw_image(index)
pose = self._load_densepose(index)
segm = self._load_segm(index)
if self.xflip and random.random() > 0.5:
assert image.ndim == 3 # CHW
image = image[:, :, ::-1].copy()
pose = pose[:, :, ::-1].copy()
segm = segm[:, :, ::-1].copy()
image = torch.from_numpy(image)
segm = torch.from_numpy(segm)
upper_fused_attr = self.upper_fused_attrs[index]
lower_fused_attr = self.lower_fused_attrs[index]
outer_fused_attr = self.outer_fused_attrs[index]
# mask 0: denotes the common codebook,
# mask (attr + 1): denotes the texture-specific codebook
mask = torch.zeros_like(segm)
if upper_fused_attr != 17:
for cls in self.upper_cls:
mask[segm == cls] = upper_fused_attr + 1
if lower_fused_attr != 17:
for cls in self.lower_cls:
mask[segm == cls] = lower_fused_attr + 1
if outer_fused_attr != 17:
for cls in self.outer_cls:
mask[segm == cls] = outer_fused_attr + 1
pose = pose / 12. - 1
image = image / 127.5 - 1
return_dict = {
'image': image,
'densepose': pose,
'segm': segm,
'texture_mask': mask,
'img_name': self._image_fnames[index]
}
return return_dict
def __len__(self):
return len(self._image_fnames)