Text-human / Text2Human /data /pose_attr_dataset.py
yitianlian's picture
update demo
24be7a2
raw
history blame
4.07 kB
import os
import os.path
import random
import numpy as np
import torch
import torch.utils.data as data
from PIL import Image
class DeepFashionAttrPoseDataset(data.Dataset):
def __init__(self,
pose_dir,
texture_ann_dir,
shape_ann_path,
downsample_factor=2,
xflip=False):
self._densepose_path = pose_dir
self._image_fnames_target = []
self._image_fnames = []
self.upper_fused_attrs = []
self.lower_fused_attrs = []
self.outer_fused_attrs = []
self.shape_attrs = []
self.downsample_factor = downsample_factor
self.xflip = xflip
# load attributes
assert os.path.exists(f'{texture_ann_dir}/upper_fused.txt')
for idx, row in enumerate(
open(os.path.join(f'{texture_ann_dir}/upper_fused.txt'), 'r')):
annotations = row.split()
self._image_fnames_target.append(annotations[0])
self._image_fnames.append(f'{annotations[0].split(".")[0]}.png')
self.upper_fused_attrs.append(int(annotations[1]))
assert len(self._image_fnames_target) == len(self.upper_fused_attrs)
assert os.path.exists(f'{texture_ann_dir}/lower_fused.txt')
for idx, row in enumerate(
open(os.path.join(f'{texture_ann_dir}/lower_fused.txt'), 'r')):
annotations = row.split()
assert self._image_fnames_target[idx] == annotations[0]
self.lower_fused_attrs.append(int(annotations[1]))
assert len(self._image_fnames_target) == len(self.lower_fused_attrs)
assert os.path.exists(f'{texture_ann_dir}/outer_fused.txt')
for idx, row in enumerate(
open(os.path.join(f'{texture_ann_dir}/outer_fused.txt'), 'r')):
annotations = row.split()
assert self._image_fnames_target[idx] == annotations[0]
self.outer_fused_attrs.append(int(annotations[1]))
assert len(self._image_fnames_target) == len(self.outer_fused_attrs)
assert os.path.exists(shape_ann_path)
for idx, row in enumerate(open(os.path.join(shape_ann_path), 'r')):
annotations = row.split()
assert self._image_fnames_target[idx] == annotations[0]
self.shape_attrs.append([int(i) for i in annotations[1:]])
def _open_file(self, path_prefix, fname):
return open(os.path.join(path_prefix, fname), 'rb')
def _load_densepose(self, raw_idx):
fname = self._image_fnames[raw_idx]
fname = f'{fname[:-4]}_densepose.png'
with self._open_file(self._densepose_path, fname) as f:
densepose = Image.open(f)
if self.downsample_factor != 1:
width, height = densepose.size
width = width // self.downsample_factor
height = height // self.downsample_factor
densepose = densepose.resize(
size=(width, height), resample=Image.NEAREST)
# channel-wise IUV order, [3, H, W]
densepose = np.array(densepose)[:, :, 2:].transpose(2, 0, 1)
return densepose.astype(np.float32)
def __getitem__(self, index):
pose = self._load_densepose(index)
shape_attr = self.shape_attrs[index]
shape_attr = torch.LongTensor(shape_attr)
if self.xflip and random.random() > 0.5:
pose = pose[:, :, ::-1].copy()
upper_fused_attr = self.upper_fused_attrs[index]
lower_fused_attr = self.lower_fused_attrs[index]
outer_fused_attr = self.outer_fused_attrs[index]
pose = pose / 12. - 1
return_dict = {
'densepose': pose,
'img_name': self._image_fnames_target[index],
'shape_attr': shape_attr,
'upper_fused_attr': upper_fused_attr,
'lower_fused_attr': lower_fused_attr,
'outer_fused_attr': outer_fused_attr,
}
return return_dict
def __len__(self):
return len(self._image_fnames)