Spaces:
Runtime error
Runtime error
File size: 7,144 Bytes
24be7a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
from __future__ import annotations
import os
import pathlib
import sys
import zipfile
import huggingface_hub
import numpy as np
import PIL.Image
import torch
sys.path.insert(0, 'Text2Human')
from models.sample_model import SampleFromPoseModel
from utils.language_utils import (generate_shape_attributes,
generate_texture_attributes)
from utils.options import dict_to_nonedict, parse
from utils.util import set_random_seed
COLOR_LIST = [
(0, 0, 0),
(255, 250, 250),
(220, 220, 220),
(250, 235, 215),
(255, 250, 205),
(211, 211, 211),
(70, 130, 180),
(127, 255, 212),
(0, 100, 0),
(50, 205, 50),
(255, 255, 0),
(245, 222, 179),
(255, 140, 0),
(255, 0, 0),
(16, 78, 139),
(144, 238, 144),
(50, 205, 174),
(50, 155, 250),
(160, 140, 88),
(213, 140, 88),
(90, 140, 90),
(185, 210, 205),
(130, 165, 180),
(225, 141, 151),
]
class Model:
def __init__(self, device: str):
self.config = self._load_config()
self.config['device'] = device
self._download_models()
self.model = SampleFromPoseModel(self.config)
self.model.batch_size = 1
def _load_config(self) -> dict:
path = 'Text2Human/configs/sample_from_pose.yml'
config = parse(path, is_train=False)
config = dict_to_nonedict(config)
return config
def _download_models(self) -> None:
model_dir = pathlib.Path('pretrained_models')
if model_dir.exists():
return
token = os.getenv('HF_TOKEN')
path = huggingface_hub.hf_hub_download('yumingj/Text2Human_SSHQ',
'pretrained_models.zip',
use_auth_token=token)
model_dir.mkdir()
with zipfile.ZipFile(path) as f:
f.extractall(model_dir)
@staticmethod
def preprocess_pose_image(image: PIL.Image.Image) -> torch.Tensor:
image = np.array(
image.resize(
size=(256, 512),
resample=PIL.Image.Resampling.LANCZOS))[:, :, 2:].transpose(
2, 0, 1).astype(np.float32)
image = image / 12. - 1
data = torch.from_numpy(image).unsqueeze(1)
return data
@staticmethod
def process_mask(mask: np.ndarray) -> np.ndarray:
if mask.shape != (512, 256, 3):
return None
seg_map = np.full(mask.shape[:-1], -1)
for index, color in enumerate(COLOR_LIST):
seg_map[np.sum(mask == color, axis=2) == 3] = index
if not (seg_map != -1).all():
return None
return seg_map
# def process_mask(self, mask: np.ndarray) -> np.ndarray:
# if mask.shape != (512, 256, 3):
# return None
# seg_map = np.full(mask.shape[:-1], -1)
# for index, color in enumerate(COLOR_LIST):
# seg_map[np.sum(mask == color, axis=2) == 3] = index
# # 创建一个新的 3 通道图像用于输出结果
# result = np.zeros((mask.shape[0], mask.shape[1], 3), dtype=np.uint8)
# # 将匹配的像素分配对应的颜色
# for index, color in enumerate(COLOR_LIST):
# result[seg_map == index] = color
# # 将未匹配的像素设置为白色
# result[seg_map == -1] = (255, 250, 250)
# return result
@staticmethod
def postprocess(result: torch.Tensor) -> np.ndarray:
result = result.permute(0, 2, 3, 1)
result = result.detach().cpu().numpy()
result = result * 255
result = np.asarray(result[0, :, :, :], dtype=np.uint8)
return result
def process_pose_image(self, pose_image: PIL.Image.Image) -> torch.Tensor:
if pose_image is None:
return
data = self.preprocess_pose_image(pose_image)
self.model.feed_pose_data(data)
return data
def generate_label_image(self, pose_data: torch.Tensor,
shape_text: str) -> np.ndarray:
if pose_data is None:
return
self.model.feed_pose_data(pose_data)
shape_attributes = generate_shape_attributes(shape_text)
shape_attributes = torch.LongTensor(shape_attributes).unsqueeze(0)
self.model.feed_shape_attributes(shape_attributes)
self.model.generate_parsing_map()
self.model.generate_quantized_segm()
colored_segm = self.model.palette_result(self.model.segm[0].cpu())
return colored_segm
# def generate_human(self, label_image: np.ndarray, texture_text: str,
# sample_steps: int, seed: int) -> np.ndarray:
# if label_image is None:
# return
# mask = label_image.copy()
# seg_map = self.process_mask(mask)
# if seg_map is None:
# return
# self.model.segm = torch.from_numpy(seg_map).unsqueeze(0).unsqueeze(
# 0).to(self.model.device)
# self.model.generate_quantized_segm()
# set_random_seed(seed)
# texture_attributes = generate_texture_attributes(texture_text)
# texture_attributes = torch.LongTensor(texture_attributes)
# self.model.feed_texture_attributes(texture_attributes)
# self.model.generate_texture_map()
# self.model.sample_steps = sample_steps
# out = self.model.sample_and_refine()
# res = self.postprocess(out)
# return res
def generate_human(self,pose_data,shape_text,texture_text,sample_steps,seed):
if pose_data is None:
return
self.model.feed_pose_data(pose_data)
shape_attributes = generate_shape_attributes(shape_text)
shape_attributes = torch.LongTensor(shape_attributes).unsqueeze(0)
self.model.feed_shape_attributes(shape_attributes)
self.model.generate_parsing_map()
self.model.generate_quantized_segm()
set_random_seed(seed)
texture_attributes = generate_texture_attributes(texture_text)
texture_attributes = torch.LongTensor(texture_attributes)
self.model.feed_texture_attributes(texture_attributes)
self.model.generate_texture_map()
self.model.sample_steps = sample_steps
out = self.model.sample_and_refine()
res = self.postprocess(out)
return res
if __name__ == "__main__":
device = "cuda" if torch.cuda.is_available() else "cpu"
model = Model(device)
pose_image = PIL.Image.open("./001.png")
input_image=model.process_pose_image(pose_image)
shape_text = "A lady with a T-shirt and a skirt"
# res = model.generate_label_image(pose_data=input_image, shape_text=shape_text)
# # PIL.Image.SAVE(res, "result.png")
# im = PIL.Image.fromarray(res)
# im.save("label_image.jpg")
# print(res.shape)
all_res = model.generate_human(pose_data=input_image,shape_text=shape_text,texture_text="A lady with a T-shirt and a skirt",sample_steps=10,seed=0)
final_im = PIL.Image.fromarray(all_res)
final_im.save("final_image.jpg")
print(all_res.shape) |