Spaces:
Runtime error
Runtime error
File size: 14,440 Bytes
24be7a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import logging
import math
from collections import OrderedDict
import torch
import torch.nn.functional as F
from torchvision.utils import save_image
from models.archs.fcn_arch import MultiHeadFCNHead
from models.archs.unet_arch import UNet
from models.archs.vqgan_arch import (Decoder, DecoderRes, Encoder,
VectorQuantizerSpatialTextureAware,
VectorQuantizerTexture)
from models.losses.accuracy import accuracy
from models.losses.cross_entropy_loss import CrossEntropyLoss
logger = logging.getLogger('base')
class VQGANTextureAwareSpatialHierarchyInferenceModel():
def __init__(self, opt):
self.opt = opt
self.device = torch.device('cuda')
self.is_train = opt['is_train']
self.top_encoder = Encoder(
ch=opt['top_ch'],
num_res_blocks=opt['top_num_res_blocks'],
attn_resolutions=opt['top_attn_resolutions'],
ch_mult=opt['top_ch_mult'],
in_channels=opt['top_in_channels'],
resolution=opt['top_resolution'],
z_channels=opt['top_z_channels'],
double_z=opt['top_double_z'],
dropout=opt['top_dropout']).to(self.device)
self.decoder = Decoder(
in_channels=opt['top_in_channels'],
resolution=opt['top_resolution'],
z_channels=opt['top_z_channels'],
ch=opt['top_ch'],
out_ch=opt['top_out_ch'],
num_res_blocks=opt['top_num_res_blocks'],
attn_resolutions=opt['top_attn_resolutions'],
ch_mult=opt['top_ch_mult'],
dropout=opt['top_dropout'],
resamp_with_conv=True,
give_pre_end=False).to(self.device)
self.top_quantize = VectorQuantizerTexture(
1024, opt['embed_dim'], beta=0.25).to(self.device)
self.top_quant_conv = torch.nn.Conv2d(opt["top_z_channels"],
opt['embed_dim'],
1).to(self.device)
self.top_post_quant_conv = torch.nn.Conv2d(opt['embed_dim'],
opt["top_z_channels"],
1).to(self.device)
self.load_top_pretrain_models()
self.bot_encoder = Encoder(
ch=opt['bot_ch'],
num_res_blocks=opt['bot_num_res_blocks'],
attn_resolutions=opt['bot_attn_resolutions'],
ch_mult=opt['bot_ch_mult'],
in_channels=opt['bot_in_channels'],
resolution=opt['bot_resolution'],
z_channels=opt['bot_z_channels'],
double_z=opt['bot_double_z'],
dropout=opt['bot_dropout']).to(self.device)
self.bot_decoder_res = DecoderRes(
in_channels=opt['bot_in_channels'],
resolution=opt['bot_resolution'],
z_channels=opt['bot_z_channels'],
ch=opt['bot_ch'],
num_res_blocks=opt['bot_num_res_blocks'],
ch_mult=opt['bot_ch_mult'],
dropout=opt['bot_dropout'],
give_pre_end=False).to(self.device)
self.bot_quantize = VectorQuantizerSpatialTextureAware(
opt['bot_n_embed'],
opt['embed_dim'],
beta=0.25,
spatial_size=opt['codebook_spatial_size']).to(self.device)
self.bot_quant_conv = torch.nn.Conv2d(opt["bot_z_channels"],
opt['embed_dim'],
1).to(self.device)
self.bot_post_quant_conv = torch.nn.Conv2d(opt['embed_dim'],
opt["bot_z_channels"],
1).to(self.device)
self.load_bot_pretrain_network()
self.guidance_encoder = UNet(
in_channels=opt['encoder_in_channels']).to(self.device)
self.index_decoder = MultiHeadFCNHead(
in_channels=opt['fc_in_channels'],
in_index=opt['fc_in_index'],
channels=opt['fc_channels'],
num_convs=opt['fc_num_convs'],
concat_input=opt['fc_concat_input'],
dropout_ratio=opt['fc_dropout_ratio'],
num_classes=opt['fc_num_classes'],
align_corners=opt['fc_align_corners'],
num_head=18).to(self.device)
self.init_training_settings()
def init_training_settings(self):
optim_params = []
for v in self.guidance_encoder.parameters():
if v.requires_grad:
optim_params.append(v)
for v in self.index_decoder.parameters():
if v.requires_grad:
optim_params.append(v)
# set up optimizers
if self.opt['optimizer'] == 'Adam':
self.optimizer = torch.optim.Adam(
optim_params,
self.opt['lr'],
weight_decay=self.opt['weight_decay'])
elif self.opt['optimizer'] == 'SGD':
self.optimizer = torch.optim.SGD(
optim_params,
self.opt['lr'],
momentum=self.opt['momentum'],
weight_decay=self.opt['weight_decay'])
self.log_dict = OrderedDict()
if self.opt['loss_function'] == 'cross_entropy':
self.loss_func = CrossEntropyLoss().to(self.device)
def load_top_pretrain_models(self):
# load pretrained vqgan for segmentation mask
top_vae_checkpoint = torch.load(self.opt['top_vae_path'])
self.top_encoder.load_state_dict(
top_vae_checkpoint['encoder'], strict=True)
self.decoder.load_state_dict(
top_vae_checkpoint['decoder'], strict=True)
self.top_quantize.load_state_dict(
top_vae_checkpoint['quantize'], strict=True)
self.top_quant_conv.load_state_dict(
top_vae_checkpoint['quant_conv'], strict=True)
self.top_post_quant_conv.load_state_dict(
top_vae_checkpoint['post_quant_conv'], strict=True)
self.top_encoder.eval()
self.top_quantize.eval()
self.top_quant_conv.eval()
self.top_post_quant_conv.eval()
def load_bot_pretrain_network(self):
checkpoint = torch.load(self.opt['bot_vae_path'])
self.bot_encoder.load_state_dict(
checkpoint['bot_encoder'], strict=True)
self.bot_decoder_res.load_state_dict(
checkpoint['bot_decoder_res'], strict=True)
self.decoder.load_state_dict(checkpoint['decoder'], strict=True)
self.bot_quantize.load_state_dict(
checkpoint['bot_quantize'], strict=True)
self.bot_quant_conv.load_state_dict(
checkpoint['bot_quant_conv'], strict=True)
self.bot_post_quant_conv.load_state_dict(
checkpoint['bot_post_quant_conv'], strict=True)
self.bot_encoder.eval()
self.bot_decoder_res.eval()
self.decoder.eval()
self.bot_quantize.eval()
self.bot_quant_conv.eval()
self.bot_post_quant_conv.eval()
def top_encode(self, x, mask):
h = self.top_encoder(x)
h = self.top_quant_conv(h)
quant, _, _ = self.top_quantize(h, mask)
quant = self.top_post_quant_conv(quant)
return quant, quant
def feed_data(self, data):
self.image = data['image'].to(self.device)
self.texture_mask = data['texture_mask'].float().to(self.device)
self.get_gt_indices()
self.texture_tokens = F.interpolate(
self.texture_mask, size=(32, 16),
mode='nearest').view(self.image.size(0), -1).long()
def bot_encode(self, x, mask):
h = self.bot_encoder(x)
h = self.bot_quant_conv(h)
_, _, (_, _, indices_list) = self.bot_quantize(h, mask)
return indices_list
def get_gt_indices(self):
self.quant_t, self.feature_t = self.top_encode(self.image,
self.texture_mask)
self.gt_indices_list = self.bot_encode(self.image, self.texture_mask)
def index_to_image(self, index_bottom_list, texture_mask):
quant_b = self.bot_quantize.get_codebook_entry(
index_bottom_list, texture_mask,
(index_bottom_list[0].size(0), index_bottom_list[0].size(1),
index_bottom_list[0].size(2),
self.opt["bot_z_channels"])) #.permute(0, 3, 1, 2)
quant_b = self.bot_post_quant_conv(quant_b)
bot_dec_res = self.bot_decoder_res(quant_b)
dec = self.decoder(self.quant_t, bot_h=bot_dec_res)
return dec
def get_vis(self, pred_img_index, rec_img_index, texture_mask, save_path):
rec_img = self.index_to_image(rec_img_index, texture_mask)
pred_img = self.index_to_image(pred_img_index, texture_mask)
base_img = self.decoder(self.quant_t)
img_cat = torch.cat([
self.image,
rec_img,
base_img,
pred_img,
], dim=3).detach()
img_cat = ((img_cat + 1) / 2)
img_cat = img_cat.clamp_(0, 1)
save_image(img_cat, save_path, nrow=1, padding=4)
def optimize_parameters(self):
self.guidance_encoder.train()
self.index_decoder.train()
self.feature_enc = self.guidance_encoder(self.feature_t)
self.memory_logits_list = self.index_decoder(self.feature_enc)
loss = 0
for i in range(18):
loss += self.loss_func(
self.memory_logits_list[i],
self.gt_indices_list[i],
ignore_index=-1)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.log_dict['loss_total'] = loss
def inference(self, data_loader, save_dir):
self.guidance_encoder.eval()
self.index_decoder.eval()
acc = 0
num = 0
for _, data in enumerate(data_loader):
self.feed_data(data)
img_name = data['img_name']
num += self.image.size(0)
texture_mask_flatten = self.texture_tokens.view(-1)
min_encodings_indices_list = [
torch.full(
texture_mask_flatten.size(),
fill_value=-1,
dtype=torch.long,
device=texture_mask_flatten.device) for _ in range(18)
]
with torch.no_grad():
self.feature_enc = self.guidance_encoder(self.feature_t)
memory_logits_list = self.index_decoder(self.feature_enc)
# memory_indices_pred = memory_logits.argmax(dim=1)
batch_acc = 0
for codebook_idx, memory_logits in enumerate(memory_logits_list):
region_of_interest = texture_mask_flatten == codebook_idx
if torch.sum(region_of_interest) > 0:
memory_indices_pred = memory_logits.argmax(dim=1).view(-1)
batch_acc += torch.sum(
memory_indices_pred[region_of_interest] ==
self.gt_indices_list[codebook_idx].view(
-1)[region_of_interest])
memory_indices_pred = memory_indices_pred
min_encodings_indices_list[codebook_idx][
region_of_interest] = memory_indices_pred[
region_of_interest]
min_encodings_indices_return_list = [
min_encodings_indices.view(self.gt_indices_list[0].size())
for min_encodings_indices in min_encodings_indices_list
]
batch_acc = batch_acc / self.gt_indices_list[codebook_idx].numel(
) * self.image.size(0)
acc += batch_acc
self.get_vis(min_encodings_indices_return_list,
self.gt_indices_list, self.texture_mask,
f'{save_dir}/{img_name[0]}')
self.guidance_encoder.train()
self.index_decoder.train()
return (acc / num).item()
def load_network(self):
checkpoint = torch.load(self.opt['pretrained_models'])
self.guidance_encoder.load_state_dict(
checkpoint['guidance_encoder'], strict=True)
self.guidance_encoder.eval()
self.index_decoder.load_state_dict(
checkpoint['index_decoder'], strict=True)
self.index_decoder.eval()
def save_network(self, save_path):
"""Save networks.
Args:
net (nn.Module): Network to be saved.
net_label (str): Network label.
current_iter (int): Current iter number.
"""
save_dict = {}
save_dict['guidance_encoder'] = self.guidance_encoder.state_dict()
save_dict['index_decoder'] = self.index_decoder.state_dict()
torch.save(save_dict, save_path)
def update_learning_rate(self, epoch):
"""Update learning rate.
Args:
current_iter (int): Current iteration.
warmup_iter (int): Warmup iter numbers. -1 for no warmup.
Default: -1.
"""
lr = self.optimizer.param_groups[0]['lr']
if self.opt['lr_decay'] == 'step':
lr = self.opt['lr'] * (
self.opt['gamma']**(epoch // self.opt['step']))
elif self.opt['lr_decay'] == 'cos':
lr = self.opt['lr'] * (
1 + math.cos(math.pi * epoch / self.opt['num_epochs'])) / 2
elif self.opt['lr_decay'] == 'linear':
lr = self.opt['lr'] * (1 - epoch / self.opt['num_epochs'])
elif self.opt['lr_decay'] == 'linear2exp':
if epoch < self.opt['turning_point'] + 1:
# learning rate decay as 95%
# at the turning point (1 / 95% = 1.0526)
lr = self.opt['lr'] * (
1 - epoch / int(self.opt['turning_point'] * 1.0526))
else:
lr *= self.opt['gamma']
elif self.opt['lr_decay'] == 'schedule':
if epoch in self.opt['schedule']:
lr *= self.opt['gamma']
else:
raise ValueError('Unknown lr mode {}'.format(self.opt['lr_decay']))
# set learning rate
for param_group in self.optimizer.param_groups:
param_group['lr'] = lr
return lr
def get_current_log(self):
return self.log_dict
|