File size: 14,440 Bytes
24be7a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import logging
import math
from collections import OrderedDict

import torch
import torch.nn.functional as F
from torchvision.utils import save_image

from models.archs.fcn_arch import MultiHeadFCNHead
from models.archs.unet_arch import UNet
from models.archs.vqgan_arch import (Decoder, DecoderRes, Encoder,
                                     VectorQuantizerSpatialTextureAware,
                                     VectorQuantizerTexture)
from models.losses.accuracy import accuracy
from models.losses.cross_entropy_loss import CrossEntropyLoss

logger = logging.getLogger('base')


class VQGANTextureAwareSpatialHierarchyInferenceModel():

    def __init__(self, opt):
        self.opt = opt
        self.device = torch.device('cuda')
        self.is_train = opt['is_train']

        self.top_encoder = Encoder(
            ch=opt['top_ch'],
            num_res_blocks=opt['top_num_res_blocks'],
            attn_resolutions=opt['top_attn_resolutions'],
            ch_mult=opt['top_ch_mult'],
            in_channels=opt['top_in_channels'],
            resolution=opt['top_resolution'],
            z_channels=opt['top_z_channels'],
            double_z=opt['top_double_z'],
            dropout=opt['top_dropout']).to(self.device)
        self.decoder = Decoder(
            in_channels=opt['top_in_channels'],
            resolution=opt['top_resolution'],
            z_channels=opt['top_z_channels'],
            ch=opt['top_ch'],
            out_ch=opt['top_out_ch'],
            num_res_blocks=opt['top_num_res_blocks'],
            attn_resolutions=opt['top_attn_resolutions'],
            ch_mult=opt['top_ch_mult'],
            dropout=opt['top_dropout'],
            resamp_with_conv=True,
            give_pre_end=False).to(self.device)
        self.top_quantize = VectorQuantizerTexture(
            1024, opt['embed_dim'], beta=0.25).to(self.device)
        self.top_quant_conv = torch.nn.Conv2d(opt["top_z_channels"],
                                              opt['embed_dim'],
                                              1).to(self.device)
        self.top_post_quant_conv = torch.nn.Conv2d(opt['embed_dim'],
                                                   opt["top_z_channels"],
                                                   1).to(self.device)
        self.load_top_pretrain_models()

        self.bot_encoder = Encoder(
            ch=opt['bot_ch'],
            num_res_blocks=opt['bot_num_res_blocks'],
            attn_resolutions=opt['bot_attn_resolutions'],
            ch_mult=opt['bot_ch_mult'],
            in_channels=opt['bot_in_channels'],
            resolution=opt['bot_resolution'],
            z_channels=opt['bot_z_channels'],
            double_z=opt['bot_double_z'],
            dropout=opt['bot_dropout']).to(self.device)
        self.bot_decoder_res = DecoderRes(
            in_channels=opt['bot_in_channels'],
            resolution=opt['bot_resolution'],
            z_channels=opt['bot_z_channels'],
            ch=opt['bot_ch'],
            num_res_blocks=opt['bot_num_res_blocks'],
            ch_mult=opt['bot_ch_mult'],
            dropout=opt['bot_dropout'],
            give_pre_end=False).to(self.device)
        self.bot_quantize = VectorQuantizerSpatialTextureAware(
            opt['bot_n_embed'],
            opt['embed_dim'],
            beta=0.25,
            spatial_size=opt['codebook_spatial_size']).to(self.device)
        self.bot_quant_conv = torch.nn.Conv2d(opt["bot_z_channels"],
                                              opt['embed_dim'],
                                              1).to(self.device)
        self.bot_post_quant_conv = torch.nn.Conv2d(opt['embed_dim'],
                                                   opt["bot_z_channels"],
                                                   1).to(self.device)

        self.load_bot_pretrain_network()

        self.guidance_encoder = UNet(
            in_channels=opt['encoder_in_channels']).to(self.device)
        self.index_decoder = MultiHeadFCNHead(
            in_channels=opt['fc_in_channels'],
            in_index=opt['fc_in_index'],
            channels=opt['fc_channels'],
            num_convs=opt['fc_num_convs'],
            concat_input=opt['fc_concat_input'],
            dropout_ratio=opt['fc_dropout_ratio'],
            num_classes=opt['fc_num_classes'],
            align_corners=opt['fc_align_corners'],
            num_head=18).to(self.device)

        self.init_training_settings()

    def init_training_settings(self):
        optim_params = []
        for v in self.guidance_encoder.parameters():
            if v.requires_grad:
                optim_params.append(v)
        for v in self.index_decoder.parameters():
            if v.requires_grad:
                optim_params.append(v)
        # set up optimizers
        if self.opt['optimizer'] == 'Adam':
            self.optimizer = torch.optim.Adam(
                optim_params,
                self.opt['lr'],
                weight_decay=self.opt['weight_decay'])
        elif self.opt['optimizer'] == 'SGD':
            self.optimizer = torch.optim.SGD(
                optim_params,
                self.opt['lr'],
                momentum=self.opt['momentum'],
                weight_decay=self.opt['weight_decay'])
        self.log_dict = OrderedDict()
        if self.opt['loss_function'] == 'cross_entropy':
            self.loss_func = CrossEntropyLoss().to(self.device)

    def load_top_pretrain_models(self):
        # load pretrained vqgan for segmentation mask
        top_vae_checkpoint = torch.load(self.opt['top_vae_path'])
        self.top_encoder.load_state_dict(
            top_vae_checkpoint['encoder'], strict=True)
        self.decoder.load_state_dict(
            top_vae_checkpoint['decoder'], strict=True)
        self.top_quantize.load_state_dict(
            top_vae_checkpoint['quantize'], strict=True)
        self.top_quant_conv.load_state_dict(
            top_vae_checkpoint['quant_conv'], strict=True)
        self.top_post_quant_conv.load_state_dict(
            top_vae_checkpoint['post_quant_conv'], strict=True)
        self.top_encoder.eval()
        self.top_quantize.eval()
        self.top_quant_conv.eval()
        self.top_post_quant_conv.eval()

    def load_bot_pretrain_network(self):
        checkpoint = torch.load(self.opt['bot_vae_path'])
        self.bot_encoder.load_state_dict(
            checkpoint['bot_encoder'], strict=True)
        self.bot_decoder_res.load_state_dict(
            checkpoint['bot_decoder_res'], strict=True)
        self.decoder.load_state_dict(checkpoint['decoder'], strict=True)
        self.bot_quantize.load_state_dict(
            checkpoint['bot_quantize'], strict=True)
        self.bot_quant_conv.load_state_dict(
            checkpoint['bot_quant_conv'], strict=True)
        self.bot_post_quant_conv.load_state_dict(
            checkpoint['bot_post_quant_conv'], strict=True)

        self.bot_encoder.eval()
        self.bot_decoder_res.eval()
        self.decoder.eval()
        self.bot_quantize.eval()
        self.bot_quant_conv.eval()
        self.bot_post_quant_conv.eval()

    def top_encode(self, x, mask):
        h = self.top_encoder(x)
        h = self.top_quant_conv(h)
        quant, _, _ = self.top_quantize(h, mask)
        quant = self.top_post_quant_conv(quant)

        return quant, quant

    def feed_data(self, data):
        self.image = data['image'].to(self.device)
        self.texture_mask = data['texture_mask'].float().to(self.device)
        self.get_gt_indices()

        self.texture_tokens = F.interpolate(
            self.texture_mask, size=(32, 16),
            mode='nearest').view(self.image.size(0), -1).long()

    def bot_encode(self, x, mask):
        h = self.bot_encoder(x)
        h = self.bot_quant_conv(h)
        _, _, (_, _, indices_list) = self.bot_quantize(h, mask)

        return indices_list

    def get_gt_indices(self):
        self.quant_t, self.feature_t = self.top_encode(self.image,
                                                       self.texture_mask)
        self.gt_indices_list = self.bot_encode(self.image, self.texture_mask)

    def index_to_image(self, index_bottom_list, texture_mask):
        quant_b = self.bot_quantize.get_codebook_entry(
            index_bottom_list, texture_mask,
            (index_bottom_list[0].size(0), index_bottom_list[0].size(1),
             index_bottom_list[0].size(2),
             self.opt["bot_z_channels"]))  #.permute(0, 3, 1, 2)
        quant_b = self.bot_post_quant_conv(quant_b)
        bot_dec_res = self.bot_decoder_res(quant_b)

        dec = self.decoder(self.quant_t, bot_h=bot_dec_res)

        return dec

    def get_vis(self, pred_img_index, rec_img_index, texture_mask, save_path):
        rec_img = self.index_to_image(rec_img_index, texture_mask)
        pred_img = self.index_to_image(pred_img_index, texture_mask)

        base_img = self.decoder(self.quant_t)
        img_cat = torch.cat([
            self.image,
            rec_img,
            base_img,
            pred_img,
        ], dim=3).detach()
        img_cat = ((img_cat + 1) / 2)
        img_cat = img_cat.clamp_(0, 1)
        save_image(img_cat, save_path, nrow=1, padding=4)

    def optimize_parameters(self):
        self.guidance_encoder.train()
        self.index_decoder.train()

        self.feature_enc = self.guidance_encoder(self.feature_t)
        self.memory_logits_list = self.index_decoder(self.feature_enc)

        loss = 0
        for i in range(18):
            loss += self.loss_func(
                self.memory_logits_list[i],
                self.gt_indices_list[i],
                ignore_index=-1)

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        self.log_dict['loss_total'] = loss

    def inference(self, data_loader, save_dir):
        self.guidance_encoder.eval()
        self.index_decoder.eval()

        acc = 0
        num = 0

        for _, data in enumerate(data_loader):
            self.feed_data(data)
            img_name = data['img_name']

            num += self.image.size(0)

            texture_mask_flatten = self.texture_tokens.view(-1)
            min_encodings_indices_list = [
                torch.full(
                    texture_mask_flatten.size(),
                    fill_value=-1,
                    dtype=torch.long,
                    device=texture_mask_flatten.device) for _ in range(18)
            ]
            with torch.no_grad():
                self.feature_enc = self.guidance_encoder(self.feature_t)
                memory_logits_list = self.index_decoder(self.feature_enc)
            # memory_indices_pred = memory_logits.argmax(dim=1)
            batch_acc = 0
            for codebook_idx, memory_logits in enumerate(memory_logits_list):
                region_of_interest = texture_mask_flatten == codebook_idx
                if torch.sum(region_of_interest) > 0:
                    memory_indices_pred = memory_logits.argmax(dim=1).view(-1)
                    batch_acc += torch.sum(
                        memory_indices_pred[region_of_interest] ==
                        self.gt_indices_list[codebook_idx].view(
                            -1)[region_of_interest])
                    memory_indices_pred = memory_indices_pred
                    min_encodings_indices_list[codebook_idx][
                        region_of_interest] = memory_indices_pred[
                            region_of_interest]
            min_encodings_indices_return_list = [
                min_encodings_indices.view(self.gt_indices_list[0].size())
                for min_encodings_indices in min_encodings_indices_list
            ]
            batch_acc = batch_acc / self.gt_indices_list[codebook_idx].numel(
            ) * self.image.size(0)
            acc += batch_acc
            self.get_vis(min_encodings_indices_return_list,
                         self.gt_indices_list, self.texture_mask,
                         f'{save_dir}/{img_name[0]}')

        self.guidance_encoder.train()
        self.index_decoder.train()
        return (acc / num).item()

    def load_network(self):
        checkpoint = torch.load(self.opt['pretrained_models'])
        self.guidance_encoder.load_state_dict(
            checkpoint['guidance_encoder'], strict=True)
        self.guidance_encoder.eval()

        self.index_decoder.load_state_dict(
            checkpoint['index_decoder'], strict=True)
        self.index_decoder.eval()

    def save_network(self, save_path):
        """Save networks.

        Args:
            net (nn.Module): Network to be saved.
            net_label (str): Network label.
            current_iter (int): Current iter number.
        """

        save_dict = {}
        save_dict['guidance_encoder'] = self.guidance_encoder.state_dict()
        save_dict['index_decoder'] = self.index_decoder.state_dict()

        torch.save(save_dict, save_path)

    def update_learning_rate(self, epoch):
        """Update learning rate.

        Args:
            current_iter (int): Current iteration.
            warmup_iter (int): Warmup iter numbers. -1 for no warmup.
                Default: -1.
        """
        lr = self.optimizer.param_groups[0]['lr']

        if self.opt['lr_decay'] == 'step':
            lr = self.opt['lr'] * (
                self.opt['gamma']**(epoch // self.opt['step']))
        elif self.opt['lr_decay'] == 'cos':
            lr = self.opt['lr'] * (
                1 + math.cos(math.pi * epoch / self.opt['num_epochs'])) / 2
        elif self.opt['lr_decay'] == 'linear':
            lr = self.opt['lr'] * (1 - epoch / self.opt['num_epochs'])
        elif self.opt['lr_decay'] == 'linear2exp':
            if epoch < self.opt['turning_point'] + 1:
                # learning rate decay as 95%
                # at the turning point (1 / 95% = 1.0526)
                lr = self.opt['lr'] * (
                    1 - epoch / int(self.opt['turning_point'] * 1.0526))
            else:
                lr *= self.opt['gamma']
        elif self.opt['lr_decay'] == 'schedule':
            if epoch in self.opt['schedule']:
                lr *= self.opt['gamma']
        else:
            raise ValueError('Unknown lr mode {}'.format(self.opt['lr_decay']))
        # set learning rate
        for param_group in self.optimizer.param_groups:
            param_group['lr'] = lr

        return lr

    def get_current_log(self):
        return self.log_dict