add compress rate
Browse files- .gitattributes +2 -2
- README.md +116 -1
- app.py +66 -9
- config.py +11 -1
- examples.py +2 -0
- requirements.txt +1 -1
- tokenizer/chinese_sptokenizer_patch.py +5 -0
- tokenizer/sptokenizer_patch.py +97 -0
- tokenizer/tiktoken_patch.py +7 -1
- tokenizer/tokenizer_patcher.py +5 -0
- util.py +17 -6
- utils/compress_rate_util.py +176 -2
- utils/digit_util.py +6 -0
- utils/text_util.py +54 -10
- utils/zh_util.py +98 -42
- vocab/README.md +39 -1
- vocab/__init__.py +11 -3
- vocab/bert_base_chinese/test_zh_coding_len.py +2 -2
- vocab/bloom/test_zh_coding_len.py +1 -1
- vocab/bloomz_6b4_zh/__init__.py +0 -2
- vocab/glm/test_tokenizer.py +1 -1
- vocab/glm_chinese/__init__.py +21 -0
- vocab/glm_chinese/test.py +5 -2
- vocab/gpt2/README.md +10 -31
- vocab/gpt_35_turbo/__init__.py +0 -1
- vocab/gpt_35_turbo/decode_test.py +9 -2
- vocab/gpt_35_turbo/test_tiktoken.py +4 -1
- vocab/gpt_35_turbo/vocab.jsonl +311 -0
- vocab/gpt_nexo_20b/README.md +14 -1
- vocab/gpt_nexo_20b/test_tokenizer.py +47 -3
- vocab/gpt_nexo_20b/tokenzier_hf/README.md +0 -6
- vocab/jamba_v0_1/__init__.py +9 -0
- vocab/kplug/__init__.py +1 -1
- vocab/llama/gpt_neox/get_oov_zh_tokens.py +2 -2
- vocab/llama3/Meta-Llama-3-70B/special_tokens_map.json +4 -0
- vocab/llama3/Meta-Llama-3-70B/tokenizer.json +3 -0
- vocab/llama3/Meta-Llama-3-70B/tokenizer_config.json +2062 -0
- vocab/llama3/__init__.py +9 -0
- vocab/mobilenet_v2/__init__.py +4 -0
- vocab/moss/test_zh_coding_len.py +2 -2
.gitattributes
CHANGED
@@ -37,5 +37,5 @@ vocab/belle_7b_2m/belle-7b-2m/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
37 |
vocab/bloom/tokenizer/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
38 |
vocab/gemma_7b/gemma-7b/tokenizer.model filter=lfs diff=lfs merge=lfs -text
|
39 |
vocab/gemma_7b/gemma-7b/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
40 |
-
vocab/
|
41 |
-
|
|
|
37 |
vocab/bloom/tokenizer/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
38 |
vocab/gemma_7b/gemma-7b/tokenizer.model filter=lfs diff=lfs merge=lfs -text
|
39 |
vocab/gemma_7b/gemma-7b/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
40 |
+
vocab/grok_1/tokenizer.model filter=lfs diff=lfs merge=lfs -text
|
41 |
+
vocab/llama3/Meta-Llama-3-70B/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -32,4 +32,119 @@ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-
|
|
32 |
-
|
33 |
|
34 |
|
35 |
-
https://huggingface.co/spaces/yenniejun/tokenizers-languages
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
-
|
33 |
|
34 |
|
35 |
+
https://huggingface.co/spaces/yenniejun/tokenizers-languages
|
36 |
+
|
37 |
+
|
38 |
+
## gradio app
|
39 |
+
|
40 |
+
- https://arena.lmsys.org/
|
41 |
+
|
42 |
+
|
43 |
+
## lang
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
## number
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
## diff
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
## Compress Rate
|
59 |
+
|
60 |
+
|
61 |
+
**简介**
|
62 |
+
we tokenize in cc-100
|
63 |
+
|
64 |
+
| tokenizer | vocab_size | g_bytes/b_tokens | t_bytes/t_tokens | b_tokens/g_bytes |
|
65 |
+
|:----------------------------|-------------:|-------------------:|-------------------:|-------------------:|
|
66 |
+
| amber | 32000 | 1.84 | 1.8 | 0.54 |
|
67 |
+
| aya_101 | 250100 | 3.89 | 3.79 | 0.26 |
|
68 |
+
| baichuan | 64000 | 3.92 | 3.82 | 0.26 |
|
69 |
+
| baichuan2 | 125696 | 4.53 | 4.42 | 0.22 |
|
70 |
+
| bert_base_cased | 28996 | 2.73 | 2.66 | 0.37 |
|
71 |
+
| bert_base_chinese | 21128 | 2.74 | 2.67 | 0.37 |
|
72 |
+
| bert_base_uncased | 30522 | 2.73 | 2.67 | 0.37 |
|
73 |
+
| bloom | 250680 | 4.28 | 4.18 | 0.23 |
|
74 |
+
| byt5_small | 256 | 0.93 | 0.91 | 1.08 |
|
75 |
+
| character_glm_6b | 64794 | 4.2 | 4.1 | 0.24 |
|
76 |
+
| chatglm2_6b | 64794 | 4.2 | 4.1 | 0.24 |
|
77 |
+
| chatglm3_6b | 64798 | 4.2 | 4.1 | 0.24 |
|
78 |
+
| chatglm_6b | 150344 | 4.65 | 4.54 | 0.22 |
|
79 |
+
| chatyuan_large_v2 | 32128 | 4.34 | 4.24 | 0.23 |
|
80 |
+
| chinese_llama | 49953 | 3.93 | 3.84 | 0.25 |
|
81 |
+
| chinese_llama2 | 55296 | 3.92 | 3.83 | 0.26 |
|
82 |
+
| code_davinci_002 | 50281 | 1.31 | 1.28 | 0.77 |
|
83 |
+
| crystal_coder | 32000 | 1.86 | 1.81 | 0.54 |
|
84 |
+
| deepseek_coder_33b_instruct | 32000 | 3.4 | 3.32 | 0.29 |
|
85 |
+
| deepseek_llm_7b_base | 100000 | 4.05 | 3.96 | 0.25 |
|
86 |
+
| falcon_180b | 65024 | 2.18 | 2.13 | 0.46 |
|
87 |
+
| falcon_7b | 65024 | 2.18 | 2.13 | 0.46 |
|
88 |
+
| fastchat_t5_3b | 32000 | 13.7 | 13.38 | 0.07 |
|
89 |
+
| flan_t5_base | 32100 | 14.13 | 13.8 | 0.07 |
|
90 |
+
| gemma_7b | 256000 | 3.82 | 3.73 | 0.26 |
|
91 |
+
| gpt2 | 50257 | 1.31 | 1.28 | 0.77 |
|
92 |
+
| gpt2_chinese | 21128 | 2.73 | 2.66 | 0.37 |
|
93 |
+
| gpt_35_turbo | 100277 | 2.26 | 2.21 | 0.44 |
|
94 |
+
| gpt_4 | 100277 | 2.26 | 2.21 | 0.44 |
|
95 |
+
| gpt_nexo_20b | 50254 | 2.01 | 1.96 | 0.5 |
|
96 |
+
| internlm2_chat_7b | 92544 | 4.23 | 4.13 | 0.24 |
|
97 |
+
| internlm2_math_7b | 92544 | 4.23 | 4.13 | 0.24 |
|
98 |
+
| internlm_chat_7b | 103168 | 4.23 | 4.14 | 0.24 |
|
99 |
+
| internlm_xcomposer_7b | 103168 | 4.23 | 4.14 | 0.24 |
|
100 |
+
| kplug | 10261 | 2.72 | 2.65 | 0.37 |
|
101 |
+
| llama | 32000 | 1.84 | 1.8 | 0.54 |
|
102 |
+
| llama2 | 32000 | 1.84 | 1.8 | 0.54 |
|
103 |
+
| mistral_7b | 32000 | 2.36 | 2.3 | 0.42 |
|
104 |
+
| mixtral_8_7b | 32000 | 2.36 | 2.3 | 0.42 |
|
105 |
+
| mobilebert_uncased | 30522 | 2.73 | 2.67 | 0.37 |
|
106 |
+
| moss | 106029 | 4.4 | 4.3 | 0.23 |
|
107 |
+
| mt5_large | 250100 | 3.89 | 3.79 | 0.26 |
|
108 |
+
| olmo_7b | 50280 | 2.01 | 1.96 | 0.5 |
|
109 |
+
| orion_14b_chat | 84608 | 4.63 | 4.52 | 0.22 |
|
110 |
+
| phi_1 | 50257 | 1.31 | 1.28 | 0.77 |
|
111 |
+
| phi_2 | 50257 | 1.31 | 1.28 | 0.77 |
|
112 |
+
| pko_t5_large | 50258 | 0.97 | 0.95 | 1.03 |
|
113 |
+
| prompt_clue | 32128 | 4.34 | 4.24 | 0.23 |
|
114 |
+
| qwen1_5_14b_chat | 151643 | 4.16 | 4.06 | 0.24 |
|
115 |
+
| qwen_1_8b_chat | 151851 | 4.16 | 4.06 | 0.24 |
|
116 |
+
| qwen_72b_chat | 151851 | 4.16 | 4.06 | 0.24 |
|
117 |
+
| qwen_7b_chat | 151851 | 4.16 | 4.06 | 0.24 |
|
118 |
+
| roberta_chinese_clue | 8021 | 2.7 | 2.64 | 0.37 |
|
119 |
+
| skywork_13b_base | 65519 | 3.69 | 3.61 | 0.27 |
|
120 |
+
| skywork_13b_math | 65519 | 3.69 | 3.61 | 0.27 |
|
121 |
+
| solar_10_7b | 32000 | 2.36 | 2.3 | 0.42 |
|
122 |
+
| starchat_alpha | 49152 | 2.78 | 2.72 | 0.36 |
|
123 |
+
| switch_c_2048 | 32100 | 14.13 | 13.8 | 0.07 |
|
124 |
+
| t5_base | 32100 | 14.13 | 13.8 | 0.07 |
|
125 |
+
| t5_large | 32100 | 14.13 | 13.8 | 0.07 |
|
126 |
+
| t5_small | 32100 | 14.13 | 13.8 | 0.07 |
|
127 |
+
| text_davinci_003 | 50281 | 1.31 | 1.28 | 0.77 |
|
128 |
+
| tigerbot_13b_chat_v2 | 60512 | 4.25 | 4.15 | 0.24 |
|
129 |
+
| tigerbot_70b_chat_v4_4k | 65107 | 4.25 | 4.15 | 0.24 |
|
130 |
+
| wizardcoder_15b_v1 | 49152 | 2.78 | 2.72 | 0.36 |
|
131 |
+
| wizardcoder_python_7b_v1 | 32000 | 1.84 | 1.8 | 0.54 |
|
132 |
+
| wizardlm_7b_v1 | 32000 | 1.84 | 1.8 | 0.54 |
|
133 |
+
| wizardmath_70b_v1 | 32000 | 1.84 | 1.8 | 0.54 |
|
134 |
+
| xlm_roberta | 250002 | 3.96 | 3.86 | 0.25 |
|
135 |
+
| yi_34b | 64000 | 4.17 | 4.07 | 0.24 |
|
136 |
+
| yi_6b | 64000 | 4.17 | 4.07 | 0.24 |
|
137 |
+
| yi_vl34b | 64000 | 4.11 | 4.02 | 0.24 |
|
138 |
+
| zephyr_7b_beta | 32000 | 2.36 | 2.3 | 0.42 |
|
139 |
+
|
140 |
+
|
141 |
+
**结论**
|
142 |
+
larger vocabulary sizes
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
## Reference
|
147 |
+
|
148 |
+
- Getting the most out of your tokenizer for pre-training and domain adaptation
|
149 |
+
- Efficient and Effective Text Encoding for Chinese LLaMA and Alpaca
|
150 |
+
- https://huggingface.co/spaces/Xenova/the-tokenizer-playground
|
app.py
CHANGED
@@ -73,6 +73,31 @@ with gr.Blocks(css="css/style.css", title="Tokenizer Arena") as demo:
|
|
73 |
show_label=False,
|
74 |
)
|
75 |
gr.Markdown("## Tokenization")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
with gr.Row():
|
77 |
with gr.Column(scale=6):
|
78 |
with gr.Group():
|
@@ -86,13 +111,19 @@ with gr.Blocks(css="css/style.css", title="Tokenizer Arena") as demo:
|
|
86 |
"""
|
87 |
with gr.Row():
|
88 |
stats_vocab_size_1 = gr.TextArea(
|
89 |
-
label="
|
90 |
lines=1,
|
91 |
elem_classes="statistics"
|
92 |
)
|
93 |
stats_zh_token_size_1 = gr.TextArea(
|
94 |
label="ZH char/word",
|
95 |
lines=1,
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
elem_classes="statistics"
|
97 |
)
|
98 |
stats_overlap_token_size_1 = gr.TextArea(
|
@@ -126,13 +157,20 @@ with gr.Blocks(css="css/style.css", title="Tokenizer Arena") as demo:
|
|
126 |
stats_zh_token_size_2 = gr.TextArea(
|
127 |
label="ZH char/word", # 中文字/词
|
128 |
lines=1,
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
elem_classes="statistics"
|
130 |
)
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
136 |
stats_overlap_token_size_2 = gr.TextArea(
|
137 |
label="Overlap Tokens",
|
138 |
lines=1,
|
@@ -141,6 +179,7 @@ with gr.Blocks(css="css/style.css", title="Tokenizer Arena") as demo:
|
|
141 |
|
142 |
# TODO: 图 表 压缩率
|
143 |
with gr.Row():
|
|
|
144 |
with gr.Column():
|
145 |
output_text_1 = gr.Highlightedtext(
|
146 |
show_legend=True,
|
@@ -156,12 +195,21 @@ with gr.Blocks(css="css/style.css", title="Tokenizer Arena") as demo:
|
|
156 |
output_table_1 = gr.Dataframe()
|
157 |
output_table_2 = gr.Dataframe()
|
158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
tokenizer_type_1.change(tokenize, [user_input, tokenizer_type_1],
|
160 |
[output_text_1, output_table_1])
|
161 |
tokenizer_type_1.change(basic_count, [tokenizer_type_1], [stats_vocab_size_1, stats_zh_token_size_1])
|
162 |
tokenizer_type_1.change(get_overlap_token_size, [tokenizer_type_1, tokenizer_type_2],
|
163 |
[stats_overlap_token_size_1, stats_overlap_token_size_2])
|
|
|
|
|
164 |
|
|
|
165 |
user_input.change(tokenize_pair,
|
166 |
[user_input, tokenizer_type_1, tokenizer_type_2],
|
167 |
[output_text_1, output_table_1, output_text_2, output_table_2]) # , pass_request=1
|
@@ -171,6 +219,15 @@ with gr.Blocks(css="css/style.css", title="Tokenizer Arena") as demo:
|
|
171 |
tokenizer_type_2.change(basic_count, [tokenizer_type_2], [stats_vocab_size_2, stats_zh_token_size_2])
|
172 |
tokenizer_type_2.change(get_overlap_token_size, [tokenizer_type_1, tokenizer_type_2],
|
173 |
[stats_overlap_token_size_1, stats_overlap_token_size_2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
dropdown_examples.change(
|
176 |
example_fn,
|
@@ -178,15 +235,15 @@ with gr.Blocks(css="css/style.css", title="Tokenizer Arena") as demo:
|
|
178 |
[user_input, tokenizer_type_1, tokenizer_type_2]
|
179 |
)
|
180 |
|
181 |
-
demo.load(
|
182 |
demo.load(
|
183 |
fn=on_load,
|
184 |
inputs=[user_input], # 这里只需要传个空object即可。
|
185 |
outputs=[user_input, tokenizer_type_1, tokenizer_type_2],
|
186 |
-
|
187 |
)
|
188 |
|
189 |
-
|
190 |
if __name__ == "__main__":
|
191 |
# demo.queue(max_size=20).launch()
|
192 |
demo.launch()
|
|
|
|
73 |
show_label=False,
|
74 |
)
|
75 |
gr.Markdown("## Tokenization")
|
76 |
+
|
77 |
+
# compress rate setting
|
78 |
+
with gr.Accordion("Compress Rate Setting", open=True):
|
79 |
+
gr.Markdown("Please select corpus and unit of compress rate, get more details at [github](https://github.com/xu-song/tokenizer-arena/). ")
|
80 |
+
with gr.Row():
|
81 |
+
compress_rate_corpus = gr.CheckboxGroup(
|
82 |
+
["cc100-en", "cc100-zh-Hans", "cc100-es", "code"],
|
83 |
+
value=["cc100-en", "cc100-zh-Hans"],
|
84 |
+
label="corpus",
|
85 |
+
# info=""
|
86 |
+
)
|
87 |
+
compress_rate_unit = gr.Radio(
|
88 |
+
["b_tokens/g_bytes", "g_bytes/b_tokens", "t_tokens/t_bytes", "t_bytes/t_tokens"],
|
89 |
+
value="b_tokens/g_bytes",
|
90 |
+
label="unit",
|
91 |
+
)
|
92 |
+
# TODO: Token Setting
|
93 |
+
# with gr.Accordion("Token Filter Setting", open=False):
|
94 |
+
# gr.Markdown(
|
95 |
+
# "Get total number of tokens which contain the following character)")
|
96 |
+
# gr.Radio(
|
97 |
+
# ["zh-Hans", "", "number", "space"],
|
98 |
+
# value="zh",
|
99 |
+
# )
|
100 |
+
|
101 |
with gr.Row():
|
102 |
with gr.Column(scale=6):
|
103 |
with gr.Group():
|
|
|
111 |
"""
|
112 |
with gr.Row():
|
113 |
stats_vocab_size_1 = gr.TextArea(
|
114 |
+
label="Vocab Size",
|
115 |
lines=1,
|
116 |
elem_classes="statistics"
|
117 |
)
|
118 |
stats_zh_token_size_1 = gr.TextArea(
|
119 |
label="ZH char/word",
|
120 |
lines=1,
|
121 |
+
elem_classes="statistics",
|
122 |
+
visible=False
|
123 |
+
)
|
124 |
+
stats_compress_rate_1 = gr.TextArea(
|
125 |
+
label="Compress Rate",
|
126 |
+
lines=1,
|
127 |
elem_classes="statistics"
|
128 |
)
|
129 |
stats_overlap_token_size_1 = gr.TextArea(
|
|
|
157 |
stats_zh_token_size_2 = gr.TextArea(
|
158 |
label="ZH char/word", # 中文字/词
|
159 |
lines=1,
|
160 |
+
elem_classes="statistics",
|
161 |
+
visible=False
|
162 |
+
)
|
163 |
+
stats_compress_rate_2 = gr.TextArea(
|
164 |
+
label="Compress Rate",
|
165 |
+
lines=1,
|
166 |
elem_classes="statistics"
|
167 |
)
|
168 |
+
stats_filtered_token_2 = gr.TextArea(
|
169 |
+
label="filtered tokens",
|
170 |
+
lines=1,
|
171 |
+
elem_classes="statistics",
|
172 |
+
visible=False
|
173 |
+
)
|
174 |
stats_overlap_token_size_2 = gr.TextArea(
|
175 |
label="Overlap Tokens",
|
176 |
lines=1,
|
|
|
179 |
|
180 |
# TODO: 图 表 压缩率
|
181 |
with gr.Row():
|
182 |
+
# dynamic change label
|
183 |
with gr.Column():
|
184 |
output_text_1 = gr.Highlightedtext(
|
185 |
show_legend=True,
|
|
|
195 |
output_table_1 = gr.Dataframe()
|
196 |
output_table_2 = gr.Dataframe()
|
197 |
|
198 |
+
|
199 |
+
# setting
|
200 |
+
# compress_rate_unit.change(compress_rate_unit_change, [compress_rate_unit],
|
201 |
+
# [stats_compress_rate_1, stats_compress_rate_2])
|
202 |
+
|
203 |
+
|
204 |
tokenizer_type_1.change(tokenize, [user_input, tokenizer_type_1],
|
205 |
[output_text_1, output_table_1])
|
206 |
tokenizer_type_1.change(basic_count, [tokenizer_type_1], [stats_vocab_size_1, stats_zh_token_size_1])
|
207 |
tokenizer_type_1.change(get_overlap_token_size, [tokenizer_type_1, tokenizer_type_2],
|
208 |
[stats_overlap_token_size_1, stats_overlap_token_size_2])
|
209 |
+
tokenizer_type_1.change(get_compress_rate, [tokenizer_type_1, compress_rate_corpus, compress_rate_unit],
|
210 |
+
[stats_compress_rate_1])
|
211 |
|
212 |
+
# TODO: every=3
|
213 |
user_input.change(tokenize_pair,
|
214 |
[user_input, tokenizer_type_1, tokenizer_type_2],
|
215 |
[output_text_1, output_table_1, output_text_2, output_table_2]) # , pass_request=1
|
|
|
219 |
tokenizer_type_2.change(basic_count, [tokenizer_type_2], [stats_vocab_size_2, stats_zh_token_size_2])
|
220 |
tokenizer_type_2.change(get_overlap_token_size, [tokenizer_type_1, tokenizer_type_2],
|
221 |
[stats_overlap_token_size_1, stats_overlap_token_size_2])
|
222 |
+
tokenizer_type_2.change(get_compress_rate, [tokenizer_type_2, compress_rate_corpus, compress_rate_unit],
|
223 |
+
[stats_compress_rate_2])
|
224 |
+
|
225 |
+
|
226 |
+
compress_rate_unit.change(get_compress_rate, [tokenizer_type_1, compress_rate_corpus, compress_rate_unit],
|
227 |
+
[stats_compress_rate_1])
|
228 |
+
compress_rate_unit.change(get_compress_rate, [tokenizer_type_2, compress_rate_corpus, compress_rate_unit],
|
229 |
+
[stats_compress_rate_2])
|
230 |
+
|
231 |
|
232 |
dropdown_examples.change(
|
233 |
example_fn,
|
|
|
235 |
[user_input, tokenizer_type_1, tokenizer_type_2]
|
236 |
)
|
237 |
|
238 |
+
demo.load(js=open("js/onload.js", "r", encoding="utf-8").read())
|
239 |
demo.load(
|
240 |
fn=on_load,
|
241 |
inputs=[user_input], # 这里只需要传个空object即可。
|
242 |
outputs=[user_input, tokenizer_type_1, tokenizer_type_2],
|
243 |
+
js=get_window_url_params
|
244 |
)
|
245 |
|
|
|
246 |
if __name__ == "__main__":
|
247 |
# demo.queue(max_size=20).launch()
|
248 |
demo.launch()
|
249 |
+
# demo.launch(share=True)
|
config.py
CHANGED
@@ -1,2 +1,12 @@
|
|
1 |
-
USE_REMOTE = False
|
|
|
|
|
|
|
|
|
2 |
ADD_SPECIAL_TOKEN = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
USE_REMOTE = False # use remote tokenizer or local tokenizer
|
2 |
+
|
3 |
+
# load_vocab_with_SPECIAL_TOKEN = True # 如果不包含会导致计算词典大小错误、overlap_token计算不一致。
|
4 |
+
|
5 |
+
# encoding config
|
6 |
ADD_SPECIAL_TOKEN = False
|
7 |
+
|
8 |
+
#
|
9 |
+
LAZY_IMPORT = True
|
10 |
+
|
11 |
+
# DEBUG: 设置环境变量 RUST_BACKTRACE=full
|
12 |
+
#
|
examples.py
CHANGED
@@ -24,6 +24,7 @@ examples = {
|
|
24 |
# !?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏.
|
25 |
["punctuation: ,.:/?+=\",。!?;【】〔〕〖〗", "gemma_7b", "llama"], # llama词典有点小
|
26 |
["symbol: 🦙❤❥웃유♋☮✊☏☢☚✔☑♚▢♪✈✞÷↑↓▤▥⊙■□▣▽¿─│♥❣▬▫☿Ⓐ ✋✉☣☤", "baichuan", "llama"],
|
|
|
27 |
],
|
28 |
"zh": [
|
29 |
["空格测试: 2个空格 8个空格", "llama", "chatglm2_6b"], # chatglm 有blank_n,
|
@@ -38,6 +39,7 @@ more_examples = [
|
|
38 |
# bert VS clue
|
39 |
# bert系列
|
40 |
("bert_base_cased", "bert_base_uncased", ""), # # clue VS kplug, bert VS clue
|
|
|
41 |
|
42 |
# llama系列 (基于sentencepiece)
|
43 |
("baichuan", "baichuan2", "baichuan2支持多空格 ,多个换行\n\n\n,do not add dummy prefix as Baichuan1"),
|
|
|
24 |
# !?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏.
|
25 |
["punctuation: ,.:/?+=\",。!?;【】〔〕〖〗", "gemma_7b", "llama"], # llama词典有点小
|
26 |
["symbol: 🦙❤❥웃유♋☮✊☏☢☚✔☑♚▢♪✈✞÷↑↓▤▥⊙■□▣▽¿─│♥❣▬▫☿Ⓐ ✋✉☣☤", "baichuan", "llama"],
|
27 |
+
["special: [PAD] [UNK] [CLS] [SEP] [MASK] "],
|
28 |
],
|
29 |
"zh": [
|
30 |
["空格测试: 2个空格 8个空格", "llama", "chatglm2_6b"], # chatglm 有blank_n,
|
|
|
39 |
# bert VS clue
|
40 |
# bert系列
|
41 |
("bert_base_cased", "bert_base_uncased", ""), # # clue VS kplug, bert VS clue
|
42 |
+
("bert_base_cased", "clue", ""),
|
43 |
|
44 |
# llama系列 (基于sentencepiece)
|
45 |
("baichuan", "baichuan2", "baichuan2支持多空格 ,多个换行\n\n\n,do not add dummy prefix as Baichuan1"),
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
transformers
|
2 |
sentencepiece
|
3 |
tiktoken
|
4 |
icetk
|
|
|
1 |
+
transformers
|
2 |
sentencepiece
|
3 |
tiktoken
|
4 |
icetk
|
tokenizer/chinese_sptokenizer_patch.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
ref: glm_chinese
|
3 |
+
"""
|
4 |
+
|
5 |
+
|
tokenizer/sptokenizer_patch.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
|
3 |
+
|
4 |
+
|
5 |
+
## usage
|
6 |
+
|
7 |
+
- grok
|
8 |
+
|
9 |
+
## 风险评估
|
10 |
+
|
11 |
+
- 会干扰 sentencepiece.SentencePieceProcessor的正常使用吗?
|
12 |
+
|
13 |
+
"""
|
14 |
+
import sentencepiece
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
@property
|
19 |
+
def vocab_size(self):
|
20 |
+
"""Returns vocab size"""
|
21 |
+
return self.get_piece_size()
|
22 |
+
|
23 |
+
|
24 |
+
def get_vocab(self):
|
25 |
+
"""Returns vocab as a dict"""
|
26 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
27 |
+
# vocab.update(self.added_tokens_encoder)
|
28 |
+
return vocab
|
29 |
+
|
30 |
+
|
31 |
+
def _tokenize(self, text):
|
32 |
+
"""Returns a tokenized string."""
|
33 |
+
return self.encode(text, out_type=str)
|
34 |
+
|
35 |
+
def _convert_token_to_id(self, token):
|
36 |
+
"""Converts a token (str) in an id using the vocab."""
|
37 |
+
return self.piece_to_id(token)
|
38 |
+
|
39 |
+
def _convert_id_to_token(self, index):
|
40 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
41 |
+
token = self.IdToPiece(index)
|
42 |
+
return token
|
43 |
+
|
44 |
+
def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
|
45 |
+
""" copy from transformers.PreTrainedTokenizer
|
46 |
+
Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and
|
47 |
+
added tokens.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
ids (`int` or `List[int]`):
|
51 |
+
The token id (or token ids) to convert to tokens.
|
52 |
+
skip_special_tokens (`bool`, *optional*, defaults to `False`):
|
53 |
+
Whether or not to remove special tokens in the decoding.
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
`str` or `List[str]`: The decoded token(s).
|
57 |
+
"""
|
58 |
+
self._added_tokens_decoder = {} # add by xs
|
59 |
+
if isinstance(ids, int):
|
60 |
+
if ids in self._added_tokens_decoder:
|
61 |
+
return self._added_tokens_decoder[ids].content
|
62 |
+
else:
|
63 |
+
return self._convert_id_to_token(ids)
|
64 |
+
tokens = []
|
65 |
+
for index in ids:
|
66 |
+
index = int(index)
|
67 |
+
if skip_special_tokens and index in self.all_special_ids:
|
68 |
+
continue
|
69 |
+
if index in self._added_tokens_decoder:
|
70 |
+
tokens.append(self._added_tokens_decoder[index].content)
|
71 |
+
else:
|
72 |
+
tokens.append(self._convert_id_to_token(index))
|
73 |
+
return tokens
|
74 |
+
|
75 |
+
|
76 |
+
def encode(self, *args, **kwargs):
|
77 |
+
"""
|
78 |
+
add_special_token 是为了兼容 hf_tokenizer
|
79 |
+
"""
|
80 |
+
kwargs.pop("add_special_tokens", None)
|
81 |
+
kwargs.pop("allowed_special", None)
|
82 |
+
return self.Encode(*args, **kwargs)
|
83 |
+
|
84 |
+
|
85 |
+
def decode(self, *args, **kwargs):
|
86 |
+
kwargs.pop("skip_special_tokens", None)
|
87 |
+
return self.Decode(*args, **kwargs)
|
88 |
+
|
89 |
+
|
90 |
+
sentencepiece.SentencePieceProcessor.vocab_size = vocab_size
|
91 |
+
sentencepiece.SentencePieceProcessor.get_vocab = get_vocab
|
92 |
+
sentencepiece.SentencePieceProcessor._convert_id_to_token = _convert_id_to_token
|
93 |
+
sentencepiece.SentencePieceProcessor.convert_ids_to_tokens = convert_ids_to_tokens
|
94 |
+
# sentencepiece.SentencePieceProcessor.tokenize = _tokenize
|
95 |
+
sentencepiece.SentencePieceProcessor.encode = encode
|
96 |
+
sentencepiece.SentencePieceProcessor.decode = decode
|
97 |
+
|
tokenizer/tiktoken_patch.py
CHANGED
@@ -17,7 +17,6 @@ def decode(self, tokens, errors="replace", skip_special_tokens=False):
|
|
17 |
"namereplace"
|
18 |
"""
|
19 |
try:
|
20 |
-
print(tokens)
|
21 |
decode_str = self._core_bpe.decode_bytes(tokens).decode("utf-8", errors=errors)
|
22 |
except Exception as e: # 捕捉不到 PyO3PanicException
|
23 |
logger.error(f"{e} for {tokens} -> return 'null'")
|
@@ -69,6 +68,12 @@ def get_vocab(self, token_type="str"):
|
|
69 |
return vocab
|
70 |
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
def encode(self, *args, **kwargs):
|
73 |
"""
|
74 |
add_special_token 是为了兼容 hf_tokenizer
|
@@ -84,3 +89,4 @@ Encoding.encode = encode
|
|
84 |
Encoding.decode = decode
|
85 |
Encoding.convert_ids_to_tokens = convert_ids_to_tokens
|
86 |
Encoding.get_vocab = get_vocab
|
|
|
|
17 |
"namereplace"
|
18 |
"""
|
19 |
try:
|
|
|
20 |
decode_str = self._core_bpe.decode_bytes(tokens).decode("utf-8", errors=errors)
|
21 |
except Exception as e: # 捕捉不到 PyO3PanicException
|
22 |
logger.error(f"{e} for {tokens} -> return 'null'")
|
|
|
68 |
return vocab
|
69 |
|
70 |
|
71 |
+
@property
|
72 |
+
def vocab_size(self):
|
73 |
+
"""Returns vocab size"""
|
74 |
+
return self.n_vocab
|
75 |
+
|
76 |
+
|
77 |
def encode(self, *args, **kwargs):
|
78 |
"""
|
79 |
add_special_token 是为了兼容 hf_tokenizer
|
|
|
89 |
Encoding.decode = decode
|
90 |
Encoding.convert_ids_to_tokens = convert_ids_to_tokens
|
91 |
Encoding.get_vocab = get_vocab
|
92 |
+
Encoding.vocab_size = vocab_size
|
tokenizer/tokenizer_patcher.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
def patch_tokenizer(tokenizer: "PreTrainedTokenizer") -> None:
|
4 |
+
if "PreTrainedTokenizerBase" not in str(tokenizer._pad.__func__):
|
5 |
+
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)
|
util.py
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
import json
|
3 |
-
import socket
|
4 |
import pandas as pd
|
5 |
import config
|
6 |
from vocab import load_tokener
|
7 |
from utils.zh_util import iter_vocab
|
8 |
from utils.log_util import logger
|
|
|
9 |
from functools import lru_cache
|
10 |
-
from urllib.parse import urlparse, parse_qs
|
11 |
|
12 |
|
13 |
@lru_cache
|
@@ -83,8 +82,16 @@ def tokenize_pair(text, tokenizer_type_1, tokenizer_type_2):
|
|
83 |
@lru_cache
|
84 |
def basic_count(tokenizer_type):
|
85 |
tokenizer = load_tokener(tokenizer_type)
|
86 |
-
stats = iter_vocab(tokenizer
|
87 |
-
return tokenizer.vocab_size, f'{stats["
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
|
90 |
@lru_cache
|
@@ -110,8 +117,9 @@ def get_overlap_token_size(tokenizer_type_1, tokenizer_type_2):
|
|
110 |
return overlap_token_size, overlap_token_size
|
111 |
|
112 |
|
113 |
-
default_user_input = """Replace this text in the input field to see how tokenization works
|
114 |
-
|
|
|
115 |
ラグビーワールドカップ2023フランス"""
|
116 |
default_tokenizer_type_1 = "llama"
|
117 |
# default_tokenizer_type_2 = "internlm_chat_7b"
|
@@ -147,6 +155,9 @@ def on_load(url_params, request: gr.Request):
|
|
147 |
return text, tokenizer_type_1, tokenizer_type_2
|
148 |
|
149 |
|
|
|
|
|
|
|
150 |
def test_coding():
|
151 |
bytes1 = b'\xe4\xb8\xad'
|
152 |
print(bytes1) # b'\xe4\xb8\xad'
|
|
|
1 |
import gradio as gr
|
2 |
import json
|
|
|
3 |
import pandas as pd
|
4 |
import config
|
5 |
from vocab import load_tokener
|
6 |
from utils.zh_util import iter_vocab
|
7 |
from utils.log_util import logger
|
8 |
+
from utils.compress_rate_util import tokenize_corpus, unit_convertor
|
9 |
from functools import lru_cache
|
|
|
10 |
|
11 |
|
12 |
@lru_cache
|
|
|
82 |
@lru_cache
|
83 |
def basic_count(tokenizer_type):
|
84 |
tokenizer = load_tokener(tokenizer_type)
|
85 |
+
stats = iter_vocab(tokenizer)
|
86 |
+
return tokenizer.vocab_size, f'{stats["中文token数"]}'
|
87 |
+
# return tokenizer.vocab_size, f'{stats["中文汉字数"]["中文单字"]}/{stats["中文汉字数"]["中文多字"]}'
|
88 |
+
|
89 |
+
def get_compress_rate(tokenizer_type, all_corpus, unit):
|
90 |
+
corpus_name = all_corpus[0]
|
91 |
+
tokenizer = load_tokener(tokenizer_type)
|
92 |
+
compress_rate_stats = tokenize_corpus(tokenizer, corpus_name)
|
93 |
+
compress_rate = unit_convertor(compress_rate_stats, unit)
|
94 |
+
return compress_rate
|
95 |
|
96 |
|
97 |
@lru_cache
|
|
|
117 |
return overlap_token_size, overlap_token_size
|
118 |
|
119 |
|
120 |
+
default_user_input = """Replace this text in the input field to see how tokenization works.
|
121 |
+
Buenos días!
|
122 |
+
华为发布Mate60手机。
|
123 |
ラグビーワールドカップ2023フランス"""
|
124 |
default_tokenizer_type_1 = "llama"
|
125 |
# default_tokenizer_type_2 = "internlm_chat_7b"
|
|
|
155 |
return text, tokenizer_type_1, tokenizer_type_2
|
156 |
|
157 |
|
158 |
+
def compress_rate_unit_change(unit):
|
159 |
+
return gr.update(label=f"Compress Rate: {unit}"), gr.update(label=f"Compress Rate: {unit}"),
|
160 |
+
|
161 |
def test_coding():
|
162 |
bytes1 = b'\xe4\xb8\xad'
|
163 |
print(bytes1) # b'\xe4\xb8\xad'
|
utils/compress_rate_util.py
CHANGED
@@ -1,7 +1,181 @@
|
|
1 |
"""
|
2 |
|
3 |
-
|
4 |
中文数据:clue superclue
|
5 |
英文数据:glue cnn_dailymail gigaword
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
""
|
|
|
|
1 |
"""
|
2 |
|
|
|
3 |
中文数据:clue superclue
|
4 |
英文数据:glue cnn_dailymail gigaword
|
5 |
+
代码数据:
|
6 |
+
数字:
|
7 |
+
|
8 |
+
## 参考
|
9 |
+
- https://github.com/baichuan-inc/Baichuan-7B 记录了不同分词器的压缩率
|
10 |
+
- 指标:猜测是 n_tokens/n_chars (baichuan小,说明百川token少,压缩率高)
|
11 |
+
- Baichuan 0.73; llama 1.31;
|
12 |
+
- https://github.com/QwenLM/Qwen/blob/main/tech_memo.md 记录了不同分词器的压缩率
|
13 |
+
- 以 XLM-RoBERTa为基准 (Unsupervised Cross-lingual Representation Learning at Scale ) ,
|
14 |
+
- Qwen-7B 在很多语言上压缩率都较高压缩率 (high compression rate)
|
15 |
+
- 中文: llama7b 2.2; baichuan7b 1.1; chatglm2-6b 0.9; qwen7b 0.95
|
16 |
+
- 英文:
|
17 |
+
- 指标:猜测是 n_tokens / n_tokens_xlmR
|
18 |
+
- https://github.com/hpcaitech/ColossalAI/blob/4b8312c08e8d05a5f41453d63c8671aab601ed1c/applications/Colossal-LLaMA-2/prepare_pretrain_dataset.py#L134
|
19 |
+
- 有压缩率的计算方式
|
20 |
+
- https://github.com/hpcaitech/ColossalAI/blob/main/applications/Colossal-LLaMA-2/README.md#tokenizer
|
21 |
+
- 记录了不同分词器的压缩率
|
22 |
+
- 指标:
|
23 |
+
- https://github.com/AUGMXNT/shisa/blob/6a823d77a71acbd18ab8f68a6b02f4b87ec9dddd/eval/tokenizer-efficiency-ja.py#L24
|
24 |
+
- 有压缩率的计算方式 = {n_chars} / {n_tokens}
|
25 |
+
-
|
26 |
+
- https://github.com/huggingface/transformers/blob/cec773345aeffce3c04e8891303a3f748de7141e/src/transformers/models/whisper/generation_whisper.py#L354
|
27 |
+
- 这个可能不是
|
28 |
+
- https://github.com/bojone/bytepiece/blob/main/README_en.md
|
29 |
+
- "bytes/token": the average number of bytes per token
|
30 |
+
- Getting the most out of your tokenizer for pre-training and domain adaptation 👍
|
31 |
+
- 定义:
|
32 |
+
- NSL: 两个分词器的编码长度 比例,通常以 llama为基准
|
33 |
+
- average number of bytes per token. {n_bytes} / {n_tokens}
|
34 |
+
- higher compression rate --
|
35 |
+
- *** https://github.com/microsoft/LLMLingua/blob/main/llmlingua/prompt_compressor.py
|
36 |
+
- 定义:{Compressed Size}/{Raw Size}, 来自论文 Language modeling is compression. 数值<=1.0,用 % 来表示。也有>1的情况。
|
37 |
+
-
|
38 |
+
- {Compressed Size} 指的是?
|
39 |
+
- 这里的压缩指的是 模型参数相关的。
|
40 |
+
"""
|
41 |
+
|
42 |
+
import json
|
43 |
+
import os
|
44 |
+
import pandas as pd
|
45 |
+
from datasets import load_dataset
|
46 |
+
from utils.log_util import logger
|
47 |
+
from vocab import load_tokener
|
48 |
+
|
49 |
+
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
|
50 |
+
|
51 |
+
|
52 |
+
def get_n_bytes_of_string(string_text):
|
53 |
+
n_bytes = len(string_text.encode("utf-8"))
|
54 |
+
return n_bytes
|
55 |
+
|
56 |
+
|
57 |
+
def unit_convertor(stat, unit):
|
58 |
+
n_tokens = stat["n_tokens"]
|
59 |
+
n_chars = stat["n_chars"]
|
60 |
+
n_bytes = stat["n_bytes"]
|
61 |
+
|
62 |
+
n_tokens_in_billion = n_tokens / (1000 * 1000 * 1000)
|
63 |
+
n_tokens_in_trillion = n_tokens / (1000 * 1000 * 1000 * 1000)
|
64 |
+
n_bytes_in_mb = n_bytes / (1024 * 1024)
|
65 |
+
n_bytes_in_gb = n_bytes_in_mb / 1024
|
66 |
+
n_bytes_in_tb = n_bytes_in_gb / 1024
|
67 |
+
# n_chars_in_billion = n_chars / (1000 * 1000 * 1000)
|
68 |
+
|
69 |
+
if unit == "n_tokens/n_bytes":
|
70 |
+
value = n_tokens / n_bytes
|
71 |
+
elif unit == "n_chars/n_tokens": # 重要:平均一个token包含多少个字符。
|
72 |
+
value = n_chars / n_tokens
|
73 |
+
elif unit == "n_tokens/n_chars": # 一个中文汉字需要几个token?
|
74 |
+
value = n_tokens / n_chars
|
75 |
+
elif unit == "g_bytes/b_tokens":
|
76 |
+
value = n_bytes_in_gb / n_tokens_in_billion
|
77 |
+
elif unit == "t_bytes/t_tokens": # 重要:
|
78 |
+
value = n_bytes_in_tb / n_tokens_in_trillion
|
79 |
+
elif unit == "b_tokens/g_bytes":
|
80 |
+
value = n_tokens_in_billion / n_bytes_in_gb
|
81 |
+
else:
|
82 |
+
raise "measure not support"
|
83 |
+
return round(value, 2)
|
84 |
+
|
85 |
+
|
86 |
+
all_units = ["g_bytes/b_tokens", "t_bytes/t_tokens", "b_tokens/g_bytes"]
|
87 |
+
|
88 |
+
|
89 |
+
def pprint(stats):
|
90 |
+
table = []
|
91 |
+
for tokenizer_name, stat in stats.items():
|
92 |
+
columns = {"tokenizer": tokenizer_name, "vocab_size": stat["vocab_size"]}
|
93 |
+
for unit in all_units:
|
94 |
+
if unit not in stat:
|
95 |
+
columns[unit] = unit_convertor(stat, unit)
|
96 |
+
else:
|
97 |
+
pass
|
98 |
+
|
99 |
+
table.append(columns)
|
100 |
+
df = pd.DataFrame(table)
|
101 |
+
# print(df.to_markdown(index=False, tablefmt='fancy_grid'))
|
102 |
+
logger.info(df.to_markdown(index=False))
|
103 |
+
return
|
104 |
+
|
105 |
+
|
106 |
+
cache = {}
|
107 |
+
|
108 |
+
|
109 |
+
def tokenize_corpus(tokenizer, lang, cache_dir="stats/compress_rate"):
|
110 |
+
"""
|
111 |
+
这个要独立的cache,因为速度慢。
|
112 |
+
:param tokenizer:
|
113 |
+
:param lang:
|
114 |
+
:param cache_dir:
|
115 |
+
:return:
|
116 |
+
"""
|
117 |
+
|
118 |
+
def _tokenize(tokenizer, dataset):
|
119 |
+
n_tokens = 0
|
120 |
+
n_chars = 0
|
121 |
+
n_bytes = 0
|
122 |
+
for item in dataset:
|
123 |
+
text = item["text"]
|
124 |
+
n_bytes += get_n_bytes_of_string(text)
|
125 |
+
n_chars += len(text)
|
126 |
+
encodings = tokenizer.encode(text)
|
127 |
+
n_tokens += len(encodings)
|
128 |
+
stat = {
|
129 |
+
"vocab_size": tokenizer.vocab_size,
|
130 |
+
"n_bytes": n_bytes,
|
131 |
+
"n_tokens": n_tokens,
|
132 |
+
"n_chars": n_chars,
|
133 |
+
}
|
134 |
+
return stat
|
135 |
+
|
136 |
+
tokenizer_name = tokenizer.alias
|
137 |
+
lang = lang.replace("cc100-", "")
|
138 |
+
cache_id = f"{tokenizer_name}.{lang}"
|
139 |
+
# L1: in-memory cache
|
140 |
+
if cache_id in cache:
|
141 |
+
logger.info(f"loading {cache_id} from in-memory cache")
|
142 |
+
return cache[cache_id]
|
143 |
+
|
144 |
+
# L2: file cache
|
145 |
+
cache_dir = os.path.join(CURRENT_DIR, f"../{cache_dir}")
|
146 |
+
os.makedirs(cache_dir, exist_ok=True)
|
147 |
+
cache_path = os.path.join(cache_dir, f"{cache_id}.json")
|
148 |
+
if os.path.exists(cache_path):
|
149 |
+
logger.info(f"loading {cache_id} from file cache")
|
150 |
+
stat = json.load(open(cache_path, "r", encoding="utf-8"))
|
151 |
+
cache[cache_id] = stat
|
152 |
+
return stat
|
153 |
+
|
154 |
+
# tokenize corpus
|
155 |
+
dataset = load_dataset("eson/cc100-samples", lang, split="train")
|
156 |
+
stat = _tokenize(tokenizer, dataset)
|
157 |
+
logger.info(f"saving {cache_id} to {cache_path}")
|
158 |
+
json.dump(stat, open(cache_path, "w", encoding="utf-8"))
|
159 |
+
logger.info(f"saving {cache_id} to in-memory cache")
|
160 |
+
cache[cache_id] = stat
|
161 |
+
return stat
|
162 |
+
|
163 |
+
|
164 |
+
def main():
|
165 |
+
from vocab import all_tokenizers
|
166 |
+
stats = {}
|
167 |
+
for lang in ["en", "zh-Hans"]:
|
168 |
+
print("###" * 10 + lang)
|
169 |
+
|
170 |
+
for tokenizer_name in ['llama', 'llama2', 'llama3']:
|
171 |
+
# for tokenizer_name in all_tokenizers:
|
172 |
+
tokenizer = load_tokener(tokenizer_name)
|
173 |
+
stat = tokenize_corpus(tokenizer, lang)
|
174 |
+
# ["qwen1_5_14b_chat", "gpt_35_turbo",]:
|
175 |
+
stats[tokenizer_name] = stat
|
176 |
+
|
177 |
+
pprint(stats)
|
178 |
+
|
179 |
|
180 |
+
if __name__ == "__main__":
|
181 |
+
main()
|
utils/digit_util.py
CHANGED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
|
3 |
+
qwen segments numbers by single digits.
|
4 |
+
|
5 |
+
|
6 |
+
"""
|
utils/text_util.py
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
def is_chinese(uchar):
|
7 |
"""
|
8 |
https://github.com/fxsjy/jieba/blob/master/jieba/__init__.py#L48
|
9 |
re.compile("([\u4E00-\u9FD5]+)", re.U)
|
@@ -11,18 +9,33 @@ def is_chinese(uchar):
|
|
11 |
return u'\u4e00' <= uchar <= u'\u9fa5'
|
12 |
|
13 |
|
14 |
-
|
15 |
-
def has_chinese(text):
|
16 |
""" contains Chinese characters """
|
17 |
-
return any(
|
18 |
|
19 |
|
20 |
def get_zh_count(text):
|
21 |
-
return sum([
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
|
24 |
-
def
|
25 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
|
28 |
def get_digit_count(text):
|
@@ -31,3 +44,34 @@ def get_digit_count(text):
|
|
31 |
if char in "0123456789":
|
32 |
digit_count += 1
|
33 |
return digit_count
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
+
from zhon.hanzi import punctuation as zh_punc
|
3 |
|
4 |
+
def is_zh_char(uchar):
|
|
|
|
|
|
|
5 |
"""
|
6 |
https://github.com/fxsjy/jieba/blob/master/jieba/__init__.py#L48
|
7 |
re.compile("([\u4E00-\u9FD5]+)", re.U)
|
|
|
9 |
return u'\u4e00' <= uchar <= u'\u9fa5'
|
10 |
|
11 |
|
12 |
+
def has_zh(text):
|
|
|
13 |
""" contains Chinese characters """
|
14 |
+
return any(is_zh_char(ch) for ch in text)
|
15 |
|
16 |
|
17 |
def get_zh_count(text):
|
18 |
+
return sum([is_zh_char(uchar) for uchar in text])
|
19 |
+
|
20 |
+
|
21 |
+
def is_all_zh(text):
|
22 |
+
return all(is_zh_char(char) for char in text)
|
23 |
+
|
24 |
+
|
25 |
+
def is_all_en(text):
|
26 |
+
return text.encode('utf-8').isalpha()
|
27 |
|
28 |
|
29 |
+
def is_digit_char(uchar):
|
30 |
+
return uchar in "0123456789"
|
31 |
+
|
32 |
+
|
33 |
+
def has_digit(text):
|
34 |
+
return any(is_digit_char(ch) for ch in text)
|
35 |
+
|
36 |
+
|
37 |
+
def is_all_digit(text):
|
38 |
+
return all(is_digit_char(char) for char in text)
|
39 |
|
40 |
|
41 |
def get_digit_count(text):
|
|
|
44 |
if char in "0123456789":
|
45 |
digit_count += 1
|
46 |
return digit_count
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
def has_zh_punc(text):
|
51 |
+
"""
|
52 |
+
是否包含中文标点
|
53 |
+
"""
|
54 |
+
return any(ch in zh_punc for ch in text)
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
def is_space_char(uchar):
|
59 |
+
"""
|
60 |
+
https://emptycharacter.com/
|
61 |
+
|
62 |
+
|
63 |
+
"""
|
64 |
+
|
65 |
+
|
66 |
+
def has_space(text):
|
67 |
+
pass
|
68 |
+
|
69 |
+
def is_all_space(text):
|
70 |
+
pass
|
71 |
+
|
72 |
+
def get_space_count(text):
|
73 |
+
space_count = 0
|
74 |
+
for char in text:
|
75 |
+
if len(char.strip()) == 0:
|
76 |
+
space_count += 1
|
77 |
+
return space_count
|
utils/zh_util.py
CHANGED
@@ -4,15 +4,18 @@ TODO: 繁体、简体、语种、
|
|
4 |
import os
|
5 |
import json
|
6 |
from collections import Counter
|
7 |
-
from utils.
|
8 |
-
from
|
9 |
|
10 |
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
|
11 |
|
12 |
zh_tokens = [line.strip() for line in open(os.path.join(CURRENT_DIR, "vocab.jd.txt.v2"), "r", encoding="utf-8") if
|
13 |
-
|
14 |
|
15 |
|
|
|
|
|
|
|
16 |
def zh_iterator():
|
17 |
for idx in range(ord(u'\u4e00'), ord(u'\u9fa5')):
|
18 |
yield (chr(idx))
|
@@ -28,7 +31,11 @@ def get_coding_length(tokenizer, vocab, filter=None):
|
|
28 |
continue
|
29 |
if filter is not None and filter(word):
|
30 |
continue
|
31 |
-
|
|
|
|
|
|
|
|
|
32 |
all_length.append(len(tokens))
|
33 |
# if len(tokens.ids) > 1:
|
34 |
# if len(tokens) > 3:
|
@@ -39,21 +46,6 @@ def get_coding_length(tokenizer, vocab, filter=None):
|
|
39 |
return dist_length, mean_length
|
40 |
|
41 |
|
42 |
-
def has_zh_punc(text):
|
43 |
-
"""
|
44 |
-
是否包含中文标点
|
45 |
-
"""
|
46 |
-
return any(ch in zh_punc for ch in text)
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
def get_space_count(text):
|
51 |
-
space_count = 0
|
52 |
-
for char in text:
|
53 |
-
if len(char.strip()) == 0:
|
54 |
-
space_count += 1
|
55 |
-
return space_count
|
56 |
-
|
57 |
|
58 |
def remove_special_char():
|
59 |
"""
|
@@ -67,13 +59,39 @@ def remove_special_char():
|
|
67 |
|
68 |
cache = {}
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
if from_cache and name in cache:
|
|
|
73 |
return cache[name]
|
74 |
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
# zh_token_count = {"total": 0, "包含1个中文单字": 0, "中文多字": 0}
|
79 |
|
@@ -81,56 +99,89 @@ def iter_vocab(tokenizer, name="", from_cache=True):
|
|
81 |
|
82 |
all_single_zh_tokens = set()
|
83 |
zh_symbol_count = 0
|
|
|
84 |
for token_id in range(tokenizer.vocab_size):
|
85 |
decode_str = tokenizer.decode([token_id], skip_special_tokens=False)
|
86 |
token = tokenizer.convert_ids_to_tokens([token_id], skip_special_tokens=False)[0]
|
87 |
# tokenizer.convert_tokens_to_string(tokens)
|
88 |
|
|
|
|
|
89 |
if token is None: # 有些词典有空的id(不连续)
|
90 |
continue
|
91 |
if isinstance(token, bytes):
|
92 |
token = token.decode("utf-8", errors="ignore")
|
93 |
|
94 |
digit_count = get_digit_count(decode_str)
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
space_count = get_space_count(decode_str)
|
|
|
97 |
|
98 |
-
|
99 |
{"id": token_id,
|
100 |
"token": token,
|
101 |
"token_decode": decode_str,
|
|
|
|
|
102 |
"token_len": len(decode_str),
|
103 |
-
"zh_count": zh_count,
|
104 |
-
"
|
105 |
-
"digit_count": digit_count,
|
106 |
"zh_symbol_count": zh_symbol_count,
|
|
|
107 |
},
|
108 |
-
ensure_ascii=False) + "\n"
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
all_single_zh_tokens.add(decode_str.strip().replace("#", ""))
|
118 |
#
|
|
|
119 |
|
120 |
-
dist_length, mean_length = get_coding_length(tokenizer, zh_tokens, filter=lambda k: not
|
121 |
|
122 |
# TODO: 繁体字,简体字
|
123 |
-
zh_token_count["中文单字-去重后"] = len(all_single_zh_tokens)
|
124 |
|
125 |
result = {
|
126 |
"name": name,
|
127 |
"impl": str(tokenizer.__class__),
|
128 |
"vocab_size": tokenizer.vocab_size,
|
129 |
-
"
|
|
|
|
|
130 |
"中文标点数": zh_symbol_count,
|
131 |
"中文汉字编码长度均值": mean_length,
|
132 |
"中文汉字编码长度分布": json.dumps(dist_length),
|
|
|
|
|
|
|
|
|
|
|
133 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
cache[name] = result
|
135 |
return result
|
136 |
|
@@ -140,9 +191,14 @@ if __name__ == "__main__":
|
|
140 |
# test_coding_length(zh_punc)
|
141 |
# test_coding_length(zh_iterator())
|
142 |
|
143 |
-
from vocab.chatglm2_6b import tokenizer; name = "chatglm2_6b"
|
144 |
# from vocab.chatglm_6b import tokenizer; name="chatglm_6b"
|
145 |
# from vocab.baichuan2 import tokenizer; name="baichuan2"
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
print(iter_vocab(tokenizer, name=name))
|
|
|
4 |
import os
|
5 |
import json
|
6 |
from collections import Counter
|
7 |
+
from utils.log_util import logger
|
8 |
+
from utils.text_util import is_zh_char, is_all_zh, has_zh, is_all_digit, has_digit, get_zh_count, get_digit_count, get_space_count
|
9 |
|
10 |
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
|
11 |
|
12 |
zh_tokens = [line.strip() for line in open(os.path.join(CURRENT_DIR, "vocab.jd.txt.v2"), "r", encoding="utf-8") if
|
13 |
+
is_zh_char(line.strip())]
|
14 |
|
15 |
|
16 |
+
def to_unicode(text):
|
17 |
+
return ''.join(r'\u{:04X}'.format(ord(chr)) for chr in text)
|
18 |
+
|
19 |
def zh_iterator():
|
20 |
for idx in range(ord(u'\u4e00'), ord(u'\u9fa5')):
|
21 |
yield (chr(idx))
|
|
|
31 |
continue
|
32 |
if filter is not None and filter(word):
|
33 |
continue
|
34 |
+
try:
|
35 |
+
tokens = tokenizer.encode(word)
|
36 |
+
except Exception as e:
|
37 |
+
print(e)
|
38 |
+
|
39 |
all_length.append(len(tokens))
|
40 |
# if len(tokens.ids) > 1:
|
41 |
# if len(tokens) > 3:
|
|
|
46 |
return dist_length, mean_length
|
47 |
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
def remove_special_char():
|
51 |
"""
|
|
|
59 |
|
60 |
cache = {}
|
61 |
|
62 |
+
def iter_vocab(tokenizer, from_cache=True, cache_dir="stats/iter_vocab"):
|
63 |
+
"""
|
64 |
+
由于速度较快,建议不采用文件缓存。
|
65 |
+
:param tokenizer:
|
66 |
+
:param from_cache:
|
67 |
+
:return:
|
68 |
+
"""
|
69 |
+
cache_dir = os.path.join(CURRENT_DIR, f"../{cache_dir}")
|
70 |
+
os.makedirs(cache_dir, exist_ok=True)
|
71 |
+
|
72 |
+
name = tokenizer.alias
|
73 |
|
74 |
+
# L1 cache
|
75 |
if from_cache and name in cache:
|
76 |
+
logger.info(f"load {name} from cache")
|
77 |
return cache[name]
|
78 |
|
79 |
+
# L2 cache: not recommended
|
80 |
+
|
81 |
+
# has_zh_token_stats = {"total_tokens": 0, "mean_token_length": 0}
|
82 |
+
# all_zh_token_stats = {"total_tokens": 0, "mean_token_length": 0}
|
83 |
+
# has_number_token_stats = {"total_tokens": 0, "mean_token_length": 0}
|
84 |
+
# all_number_token_stats = {"total_tokens": 0, "mean_token_length": 0}
|
85 |
+
|
86 |
+
has_zh_tokens = []
|
87 |
+
all_zh_tokens = []
|
88 |
+
has_digit_tokens = []
|
89 |
+
all_digit_tokens = []
|
90 |
+
has_space_tokens = []
|
91 |
+
all_space_tokens = []
|
92 |
+
|
93 |
+
# zh_tags = ["all_zh", "has_zh"]
|
94 |
+
# digit_tags = ["all_digit", "has_digit"]
|
95 |
|
96 |
# zh_token_count = {"total": 0, "包含1个中文单字": 0, "中文多字": 0}
|
97 |
|
|
|
99 |
|
100 |
all_single_zh_tokens = set()
|
101 |
zh_symbol_count = 0
|
102 |
+
buffer = []
|
103 |
for token_id in range(tokenizer.vocab_size):
|
104 |
decode_str = tokenizer.decode([token_id], skip_special_tokens=False)
|
105 |
token = tokenizer.convert_ids_to_tokens([token_id], skip_special_tokens=False)[0]
|
106 |
# tokenizer.convert_tokens_to_string(tokens)
|
107 |
|
108 |
+
tags = []
|
109 |
+
|
110 |
if token is None: # 有些词典有空的id(不连续)
|
111 |
continue
|
112 |
if isinstance(token, bytes):
|
113 |
token = token.decode("utf-8", errors="ignore")
|
114 |
|
115 |
digit_count = get_digit_count(decode_str)
|
116 |
+
|
117 |
+
if is_all_zh(decode_str):
|
118 |
+
tags.append("all_zh")
|
119 |
+
all_zh_tokens.append(decode_str)
|
120 |
+
elif has_zh(decode_str):
|
121 |
+
tags.append("has_zh")
|
122 |
+
has_zh_tokens.append(decode_str)
|
123 |
+
|
124 |
+
if is_all_digit(decode_str):
|
125 |
+
tags.append("all_digit")
|
126 |
+
all_digit_tokens.append(decode_str)
|
127 |
+
elif has_digit(decode_str):
|
128 |
+
tags.append("has_digit")
|
129 |
+
has_digit_tokens.append(decode_str)
|
130 |
+
|
131 |
+
|
132 |
space_count = get_space_count(decode_str)
|
133 |
+
zh_count = get_zh_count(decode_str)
|
134 |
|
135 |
+
buffer.append(json.dumps(
|
136 |
{"id": token_id,
|
137 |
"token": token,
|
138 |
"token_decode": decode_str,
|
139 |
+
"token_dumps": json.dumps(token),
|
140 |
+
"token_unicode": to_unicode(token),
|
141 |
"token_len": len(decode_str),
|
142 |
+
"zh_count": zh_count, # 包含汉字的数目
|
143 |
+
"tags": tags,
|
|
|
144 |
"zh_symbol_count": zh_symbol_count,
|
145 |
+
"": "",
|
146 |
},
|
147 |
+
ensure_ascii=False) + "\n")
|
148 |
+
|
149 |
+
# if zh_count >= 1:
|
150 |
+
# zh_token_count["total"] += 1
|
151 |
+
# if zh_count > 1:
|
152 |
+
# zh_token_count["中文多字"] += 1
|
153 |
+
# else:
|
154 |
+
# zh_token_count["中文单字"] += 1
|
155 |
+
# all_single_zh_tokens.add(decode_str.strip().replace("#", ""))
|
|
|
156 |
#
|
157 |
+
# zh_token_count["中文单字-去重后"] = len(all_single_zh_tokens)
|
158 |
|
159 |
+
dist_length, mean_length = get_coding_length(tokenizer, zh_tokens, filter=lambda k: not is_zh_char(k))
|
160 |
|
161 |
# TODO: 繁体字,简体字
|
|
|
162 |
|
163 |
result = {
|
164 |
"name": name,
|
165 |
"impl": str(tokenizer.__class__),
|
166 |
"vocab_size": tokenizer.vocab_size,
|
167 |
+
"中文token数": len(has_zh_tokens),
|
168 |
+
"中文token的平均长度": None,
|
169 |
+
"纯中文token的平均长度": None,
|
170 |
"中文标点数": zh_symbol_count,
|
171 |
"中文汉字编码长度均值": mean_length,
|
172 |
"中文汉字编码长度分布": json.dumps(dist_length),
|
173 |
+
"纯数字token数": digit_count,
|
174 |
+
"纯数字token的平均长度": None,
|
175 |
+
"纯中文token数": None,
|
176 |
+
"纯space的token数": space_count,
|
177 |
+
"纯space的token的平均长度": None,
|
178 |
}
|
179 |
+
out_path = os.path.join(cache_dir, f"{name}.vocab.jsonl")
|
180 |
+
logger.info(f"saving vocab to {out_path}")
|
181 |
+
with open(out_path, "w", encoding="utf-8") as f_out:
|
182 |
+
f_out.write(json.dumps(result, ensure_ascii=False) + "\n")
|
183 |
+
for line in buffer:
|
184 |
+
f_out.write(line)
|
185 |
cache[name] = result
|
186 |
return result
|
187 |
|
|
|
191 |
# test_coding_length(zh_punc)
|
192 |
# test_coding_length(zh_iterator())
|
193 |
|
194 |
+
# from vocab.chatglm2_6b import tokenizer; name = "chatglm2_6b"
|
195 |
# from vocab.chatglm_6b import tokenizer; name="chatglm_6b"
|
196 |
# from vocab.baichuan2 import tokenizer; name="baichuan2"
|
197 |
+
from vocab.gpt_4 import tokenizer; name="gpt4"
|
198 |
+
# from vocab.gpt2 import tokenizer; name="gpt2"
|
199 |
+
# from vocab.qwen1_5_14b_chat import tokenizer; name="qwen1_5_14b_chat"
|
200 |
+
# from vocab.gpt_nexo_20b import tokenizer; name="gpt_nexo_20b"
|
201 |
+
# from vocab.fastchat_t5_3b import tokenizer; name="fastchat_t5_3b"
|
202 |
+
|
203 |
|
204 |
print(iter_vocab(tokenizer, name=name))
|
vocab/README.md
CHANGED
@@ -36,6 +36,14 @@ chatglm
|
|
36 |
bloom
|
37 |
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
## bert
|
40 |
|
41 |
```
|
@@ -87,10 +95,40 @@ https://github.com/pytorch/fairseq/blob/master/tests/test_noising.py#L37
|
|
87 |
|
88 |
- 类似的还有:moss
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
## 空格、tab、换行
|
91 |
|
92 |
|
93 |
|
|
|
|
|
94 |
## reversible and lossless
|
95 |
|
96 |
-
It's reversible and lossless, so you can convert tokens back into the original text
|
|
|
|
|
|
|
|
|
|
|
|
36 |
bloom
|
37 |
|
38 |
|
39 |
+
## 最小词典
|
40 |
+
|
41 |
+
mobilenet
|
42 |
+
|
43 |
+
|
44 |
+
## ss
|
45 |
+
|
46 |
+
|
47 |
## bert
|
48 |
|
49 |
```
|
|
|
95 |
|
96 |
- 类似的还有:moss
|
97 |
|
98 |
+
|
99 |
+
### Ġ是什么
|
100 |
+
|
101 |
+
It's a feature of byte-level BPE(an encoded space character).
|
102 |
+
Ġ 表示空格,有的版本用Ä代替Ġ。
|
103 |
+
|
104 |
+
|
105 |
+
```sh
|
106 |
+
What's up with the tokenizer?
|
107 |
+
# BPE后
|
108 |
+
['What', "'s", 'Ġup', 'Ġwith', 'Ġthe', 'Ġtoken', 'izer', '?']
|
109 |
+
# 经过vocab.json编码后
|
110 |
+
[ 2061, 338, 510, 351, 262, 11241, 7509, 30]
|
111 |
+
# 经过dict.txt编码后(fairseq特有)
|
112 |
+
[ 其他数字 ]
|
113 |
+
```
|
114 |
+
<>
|
115 |
+
疑问:up会加Ġ,为什么what不加Ġ,因为有个pre
|
116 |
+
|
117 |
+
- https://github.com/pytorch/fairseq/issues/1716
|
118 |
+
- https://github.com/huggingface/transformers/issues/1083
|
119 |
+
|
120 |
+
|
121 |
## 空格、tab、换行
|
122 |
|
123 |
|
124 |
|
125 |
+
|
126 |
+
|
127 |
## reversible and lossless
|
128 |
|
129 |
+
It's reversible and lossless, so you can convert tokens back into the original text
|
130 |
+
|
131 |
+
|
132 |
+
## diff
|
133 |
+
|
134 |
+
|
vocab/__init__.py
CHANGED
@@ -70,7 +70,8 @@ uniq_tokenizers = [
|
|
70 |
""
|
71 |
]
|
72 |
|
73 |
-
#
|
|
|
74 |
all_tokenizers = [
|
75 |
##### bert 系列
|
76 |
("bert_base_cased", "", "bert"),
|
@@ -101,6 +102,7 @@ all_tokenizers = [
|
|
101 |
|
102 |
("llama", "", "sentencepiece", "llama use single digits and thus uses 4 tokens to encode the number 1000"), # '中文单字': 700, '中文多字': 0
|
103 |
("llama2", "", "sentencepiece"),
|
|
|
104 |
("chinese_llama", "", "sentencepiece"), #
|
105 |
("chinese_llama2", "", "sentencepiece"), #
|
106 |
# ("chinese_alpaca_lora_7b", # 中文Alpaca模型在上述中文LLaMA模型的基础上进一步使用了指令数据进行精调。
|
@@ -154,7 +156,7 @@ all_tokenizers = [
|
|
154 |
("phi_2",),
|
155 |
("solar_10_7b",),
|
156 |
("mobilebert_uncased",),
|
157 |
-
("mobilenet_v2",),
|
158 |
("switch_c_2048",),
|
159 |
("byt5_small",),
|
160 |
("mt5_large",),
|
@@ -168,7 +170,12 @@ all_tokenizers = [
|
|
168 |
("gemma_7b",),
|
169 |
("olmo_7b",),
|
170 |
("aya_101",),
|
171 |
-
("zephyr_7b_beta",)
|
|
|
|
|
|
|
|
|
|
|
172 |
]
|
173 |
|
174 |
all_tokenizers = [tokenizer[0] for tokenizer in all_tokenizers]
|
@@ -234,6 +241,7 @@ class TokenizerImpl(Enum):
|
|
234 |
|
235 |
def load_tokener(model_name):
|
236 |
tokenizer = importlib.import_module("." + model_name, 'vocab').tokenizer
|
|
|
237 |
return tokenizer
|
238 |
|
239 |
|
|
|
70 |
""
|
71 |
]
|
72 |
|
73 |
+
# format: alias/abbr, description, hf_path, tokenizer_class/type, comments, Organization
|
74 |
+
# TODO: append link and description to the end of dropdown button.
|
75 |
all_tokenizers = [
|
76 |
##### bert 系列
|
77 |
("bert_base_cased", "", "bert"),
|
|
|
102 |
|
103 |
("llama", "", "sentencepiece", "llama use single digits and thus uses 4 tokens to encode the number 1000"), # '中文单字': 700, '中文多字': 0
|
104 |
("llama2", "", "sentencepiece"),
|
105 |
+
("llama3", "", "sentencepiece"),
|
106 |
("chinese_llama", "", "sentencepiece"), #
|
107 |
("chinese_llama2", "", "sentencepiece"), #
|
108 |
# ("chinese_alpaca_lora_7b", # 中文Alpaca模型在上述中文LLaMA模型的基础上进一步使用了指令数据进行精调。
|
|
|
156 |
("phi_2",),
|
157 |
("solar_10_7b",),
|
158 |
("mobilebert_uncased",),
|
159 |
+
# ("mobilenet_v2",), # error
|
160 |
("switch_c_2048",),
|
161 |
("byt5_small",),
|
162 |
("mt5_large",),
|
|
|
170 |
("gemma_7b",),
|
171 |
("olmo_7b",),
|
172 |
("aya_101",),
|
173 |
+
("zephyr_7b_beta",),
|
174 |
+
("jamba_v0_1", ),
|
175 |
+
("dbrx_instruct", ),
|
176 |
+
("grok_1",),
|
177 |
+
# ("claude",),
|
178 |
+
|
179 |
]
|
180 |
|
181 |
all_tokenizers = [tokenizer[0] for tokenizer in all_tokenizers]
|
|
|
241 |
|
242 |
def load_tokener(model_name):
|
243 |
tokenizer = importlib.import_module("." + model_name, 'vocab').tokenizer
|
244 |
+
tokenizer.alias = model_name
|
245 |
return tokenizer
|
246 |
|
247 |
|
vocab/bert_base_chinese/test_zh_coding_len.py
CHANGED
@@ -16,7 +16,7 @@
|
|
16 |
from collections import Counter
|
17 |
from transformers import AutoTokenizer
|
18 |
from data_sample.oov_base import jd_vocab_tokens
|
19 |
-
from utils.text_util import
|
20 |
from zhon.hanzi import punctuation as zh_punc
|
21 |
|
22 |
|
@@ -55,7 +55,7 @@ def iter_vocab():
|
|
55 |
zh_symbol_count = 0
|
56 |
for idx, word in enumerate(vocab):
|
57 |
|
58 |
-
if
|
59 |
zh_token_count += 1
|
60 |
f_out.write("%d\t%s\t中文汉字\n" % (idx, decode_str))
|
61 |
elif has_zh_char(decode_str):
|
|
|
16 |
from collections import Counter
|
17 |
from transformers import AutoTokenizer
|
18 |
from data_sample.oov_base import jd_vocab_tokens
|
19 |
+
from utils.text_util import is_zh_char, has_zh
|
20 |
from zhon.hanzi import punctuation as zh_punc
|
21 |
|
22 |
|
|
|
55 |
zh_symbol_count = 0
|
56 |
for idx, word in enumerate(vocab):
|
57 |
|
58 |
+
if has_zh(decode_str):
|
59 |
zh_token_count += 1
|
60 |
f_out.write("%d\t%s\t中文汉字\n" % (idx, decode_str))
|
61 |
elif has_zh_char(decode_str):
|
vocab/bloom/test_zh_coding_len.py
CHANGED
@@ -16,7 +16,7 @@
|
|
16 |
from collections import Counter
|
17 |
from transformers import AutoTokenizer, BloomTokenizerFast
|
18 |
from data_sample.oov_base import jd_vocab_tokens
|
19 |
-
from utils.text_util import
|
20 |
from zhon.hanzi import punctuation as zh_punc
|
21 |
|
22 |
# tokenizer = AutoTokenizer.from_pretrained("tokenizer")
|
|
|
16 |
from collections import Counter
|
17 |
from transformers import AutoTokenizer, BloomTokenizerFast
|
18 |
from data_sample.oov_base import jd_vocab_tokens
|
19 |
+
from utils.text_util import is_zh_char
|
20 |
from zhon.hanzi import punctuation as zh_punc
|
21 |
|
22 |
# tokenizer = AutoTokenizer.from_pretrained("tokenizer")
|
vocab/bloomz_6b4_zh/__init__.py
CHANGED
@@ -7,5 +7,3 @@ TOKENIZER_DIR = os.path.join(CURRENT_DIR, "tokenizer")
|
|
7 |
|
8 |
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_DIR, trust_remote_code=True)
|
9 |
|
10 |
-
# vocab_size = len(tokenizer.get_vocab())
|
11 |
-
# vocab_size = tokenizer.vocab_size
|
|
|
7 |
|
8 |
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_DIR, trust_remote_code=True)
|
9 |
|
|
|
|
vocab/glm/test_tokenizer.py
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
默认采用:GLMGPT2Tokenizer
|
4 |
"""
|
5 |
|
6 |
-
from transformers import AutoTokenizer
|
7 |
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-10b", trust_remote_code=True)
|
8 |
|
9 |
tokens_id = [3856, 11030]
|
|
|
3 |
默认采用:GLMGPT2Tokenizer
|
4 |
"""
|
5 |
|
6 |
+
from transformers import AutoTokenizer
|
7 |
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-10b", trust_remote_code=True)
|
8 |
|
9 |
tokens_id = [3856, 11030]
|
vocab/glm_chinese/__init__.py
CHANGED
@@ -26,5 +26,26 @@ tokenizer.vocab_size = tokenizer.num_tokens
|
|
26 |
|
27 |
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
# vocab_size = len(tokenizer.get_vocab())
|
30 |
# vocab_size = tokenizer.vocab_size
|
|
|
26 |
|
27 |
|
28 |
|
29 |
+
def get_vocab(self, token_type="str"):
|
30 |
+
"""Returns vocab as a dict
|
31 |
+
:return:
|
32 |
+
"""
|
33 |
+
vocab = {}
|
34 |
+
for i in range(self.vocab_size):
|
35 |
+
try:
|
36 |
+
token_byte = self.convert_ids_to_tokens([i])[0]
|
37 |
+
if token_byte is None:
|
38 |
+
continue
|
39 |
+
# token_str = token_byte.decode("utf-8")
|
40 |
+
vocab[token_byte] = i
|
41 |
+
|
42 |
+
except Exception as e: # 773 UnicodeDecodeError
|
43 |
+
print("exception")
|
44 |
+
|
45 |
+
return vocab
|
46 |
+
|
47 |
+
|
48 |
+
ChineseSPTokenizer.get_vocab = get_vocab
|
49 |
+
|
50 |
# vocab_size = len(tokenizer.get_vocab())
|
51 |
# vocab_size = tokenizer.vocab_size
|
vocab/glm_chinese/test.py
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
|
2 |
-
from glm_chinese import tokenizer
|
3 |
|
4 |
-
print(tokenizer.decode([20]))
|
|
|
|
|
|
|
|
1 |
|
2 |
+
from vocab.glm_chinese import tokenizer
|
3 |
|
4 |
+
print(tokenizer.decode([20]))
|
5 |
+
vocab = tokenizer.get_vocab()
|
6 |
+
|
7 |
+
print(vocab)
|
vocab/gpt2/README.md
CHANGED
@@ -40,42 +40,21 @@ byte-level BPE
|
|
40 |
- [vocab.json](https://huggingface.co/gpt2-large/resolve/main/vocab.json): 50257个kv-pair. https://huggingface.co/gpt2/resolve/main/vocab.json
|
41 |
- [merges.txt](https://huggingface.co/gpt2-large/resolve/main/merges.txt): 50001行,https://huggingface.co/gpt2/resolve/main/merges.txt
|
42 |
- merges.txts是否包含所有的组合?https://github.com/huggingface/transformers/issues/4777
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
- vocab.bpe:50001行
|
47 |
-
- encoder.json: 50257个kv-pair
|
48 |
-
- dict.txt: 50260行 是纯数字的,是由fairseq-preprocess生成的 https://github.com/pytorch/fairseq/issues/1186
|
49 |
-
|
50 |
-
|
51 |
-
- https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json
|
52 |
-
- https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe
|
53 |
-
- https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt
|
54 |
-
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
### Ġ是什么
|
59 |
-
|
60 |
-
It's a feature of byte-level BPE(an encoded space character).
|
61 |
-
Ġ 表示空格,有的版本用Ä代替Ġ。
|
62 |
-
|
63 |
-
|
64 |
-
```
|
65 |
-
What's up with the tokenizer?
|
66 |
-
# BPE后
|
67 |
-
['What', "'s", 'Ġup', 'Ġwith', 'Ġthe', 'Ġtoken', 'izer', '?']
|
68 |
-
# 经过vocab.json编码后
|
69 |
-
[ 2061, 338, 510, 351, 262, 11241, 7509, 30]
|
70 |
-
# 经过dict.txt编码后(fairseq特有)
|
71 |
-
[ 其他数字 ]
|
72 |
-
```
|
73 |
-
疑问:up会加Ġ,为什么what不加Ġ
|
74 |
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
- https://github.com/pytorch/fairseq/issues/1716
|
77 |
-
- https://github.com/huggingface/transformers/issues/1083
|
78 |
|
|
|
79 |
|
80 |
|
81 |
|
|
|
40 |
- [vocab.json](https://huggingface.co/gpt2-large/resolve/main/vocab.json): 50257个kv-pair. https://huggingface.co/gpt2/resolve/main/vocab.json
|
41 |
- [merges.txt](https://huggingface.co/gpt2-large/resolve/main/merges.txt): 50001行,https://huggingface.co/gpt2/resolve/main/merges.txt
|
42 |
- merges.txts是否包含所有的组合?https://github.com/huggingface/transformers/issues/4777
|
43 |
+
- [tokenizer.json](https://huggingface.co/openai-community/gpt2-large/blob/main/tokenizer.json)
|
44 |
+
- 这个是给
|
45 |
|
46 |
+
词典加载 https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/tokenization_gpt2.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
### fairseq = 官方
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
- [vocab.bpe](https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe):50001行
|
51 |
+
- 等于 hf的 `merges.txt`
|
52 |
+
- [encoder.json](https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json): 50257个kv-pair
|
53 |
+
- 等于 hf的 `vocab.json`
|
54 |
+
- [dict.txt](https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt): 50260行 这是词频,是由fairseq-preprocess生成的 https://github.com/pytorch/fairseq/issues/1186
|
55 |
|
|
|
|
|
56 |
|
57 |
+
词典加载 https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/tokenization_gpt2.py
|
58 |
|
59 |
|
60 |
|
vocab/gpt_35_turbo/__init__.py
CHANGED
@@ -6,7 +6,6 @@ import tiktoken
|
|
6 |
import tokenizer.tiktoken_patch
|
7 |
|
8 |
tokenizer = tiktoken.encoding_for_model('gpt-3.5-turbo')
|
9 |
-
tokenizer.vocab_size = tokenizer.n_vocab
|
10 |
|
11 |
tokenizer.comments = "tiktoken is a fast BPE tokeniser for use with OpenAI's models. There are 16 tokens KeyError"
|
12 |
tokenizer.reversible = True # It's reversible and lossless, so you can convert tokens back into the original text
|
|
|
6 |
import tokenizer.tiktoken_patch
|
7 |
|
8 |
tokenizer = tiktoken.encoding_for_model('gpt-3.5-turbo')
|
|
|
9 |
|
10 |
tokenizer.comments = "tiktoken is a fast BPE tokeniser for use with OpenAI's models. There are 16 tokens KeyError"
|
11 |
tokenizer.reversible = True # It's reversible and lossless, so you can convert tokens back into the original text
|
vocab/gpt_35_turbo/decode_test.py
CHANGED
@@ -9,5 +9,12 @@ encoding = tokenizer.encode(text)
|
|
9 |
print(tokenizer.decode([6744]))
|
10 |
print(tokenizer.convert_ids_to_tokens([6744]))
|
11 |
|
12 |
-
print(tokenizer.decode([100256]))
|
13 |
-
print(tokenizer.convert_ids_to_tokens([100256]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
print(tokenizer.decode([6744]))
|
10 |
print(tokenizer.convert_ids_to_tokens([6744]))
|
11 |
|
12 |
+
print(tokenizer.decode([100256])) # 是没有这个token吗?
|
13 |
+
print(tokenizer.convert_ids_to_tokens([100256]))
|
14 |
+
|
15 |
+
|
16 |
+
print(tokenizer.decode([100262]))
|
17 |
+
print(tokenizer.convert_ids_to_tokens([100262]))
|
18 |
+
|
19 |
+
print(tokenizer.decode([100273]))
|
20 |
+
print(tokenizer.convert_ids_to_tokens([100273]))
|
vocab/gpt_35_turbo/test_tiktoken.py
CHANGED
@@ -9,15 +9,18 @@ https://github.com/openai/tiktoken
|
|
9 |
|
10 |
import json
|
11 |
import tiktoken
|
|
|
12 |
|
13 |
|
14 |
tokenizer = tiktoken.encoding_for_model('gpt-3.5-turbo')
|
15 |
text = "你好,请告诉我聚乙烯是什么"
|
16 |
# text = "a bcjik今天天气颗粒剂范大将军发卡卡萨"
|
17 |
-
|
|
|
18 |
decoding_bytes = tokenizer.decode_tokens_bytes(encoding)
|
19 |
print(encoding)
|
20 |
print(decoding_bytes)
|
|
|
21 |
|
22 |
# for token in tokens:
|
23 |
# token_str = encoding.decode([token])
|
|
|
9 |
|
10 |
import json
|
11 |
import tiktoken
|
12 |
+
# from tokenizer import tiktoken_patch
|
13 |
|
14 |
|
15 |
tokenizer = tiktoken.encoding_for_model('gpt-3.5-turbo')
|
16 |
text = "你好,请告诉我聚乙烯是什么"
|
17 |
# text = "a bcjik今天天气颗粒剂范大将军发卡卡萨"
|
18 |
+
text = "'<|endoftext|>"
|
19 |
+
encoding = tokenizer.encode(text, allowed_special="all")
|
20 |
decoding_bytes = tokenizer.decode_tokens_bytes(encoding)
|
21 |
print(encoding)
|
22 |
print(decoding_bytes)
|
23 |
+
# 100256
|
24 |
|
25 |
# for token in tokens:
|
26 |
# token_str = encoding.decode([token])
|
vocab/gpt_35_turbo/vocab.jsonl
CHANGED
@@ -99964,3 +99964,314 @@
|
|
99964 |
{"id": 99963, "token": "\" Geg\""}
|
99965 |
{"id": 99964, "token": "\"\\tdto\""}
|
99966 |
{"id": 99965, "token": "\".defaultValue\""}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99964 |
{"id": 99963, "token": "\" Geg\""}
|
99965 |
{"id": 99964, "token": "\"\\tdto\""}
|
99966 |
{"id": 99965, "token": "\".defaultValue\""}
|
99967 |
+
{"id": 99966, "token": "\" Kami\""}
|
99968 |
+
{"id": 99967, "token": "\" ASE\""}
|
99969 |
+
{"id": 99968, "token": "\"optimized\""}
|
99970 |
+
{"id": 99969, "token": "\" \\ud3ec\""}
|
99971 |
+
{"id": 99970, "token": "\" originates\""}
|
99972 |
+
{"id": 99971, "token": "\"errMsg\""}
|
99973 |
+
{"id": 99972, "token": "\" espa\\u00e7o\""}
|
99974 |
+
{"id": 99973, "token": "\"(SYS\""}
|
99975 |
+
{"id": 99974, "token": "\" McB\""}
|
99976 |
+
{"id": 99975, "token": "\"dance\""}
|
99977 |
+
{"id": 99976, "token": "\"_detected\""}
|
99978 |
+
{"id": 99977, "token": "\" fr\\u00fc\""}
|
99979 |
+
{"id": 99978, "token": "\"\\t\\t \\t\\t\""}
|
99980 |
+
{"id": 99979, "token": "\"<Date\""}
|
99981 |
+
{"id": 99980, "token": "\"(comb\""}
|
99982 |
+
{"id": 99981, "token": "\" Decide\""}
|
99983 |
+
{"id": 99982, "token": "\"\\\\Field\""}
|
99984 |
+
{"id": 99983, "token": "\" Proposed\""}
|
99985 |
+
{"id": 99984, "token": "\"Rib\""}
|
99986 |
+
{"id": 99985, "token": "\" dislikes\""}
|
99987 |
+
{"id": 99986, "token": "\" Wien\""}
|
99988 |
+
{"id": 99987, "token": "\"\\tDocument\""}
|
99989 |
+
{"id": 99988, "token": "\" traf\""}
|
99990 |
+
{"id": 99989, "token": "\" storia\""}
|
99991 |
+
{"id": 99990, "token": "\" Tells\""}
|
99992 |
+
{"id": 99991, "token": "\"')==\""}
|
99993 |
+
{"id": 99992, "token": "\"Cri\""}
|
99994 |
+
{"id": 99993, "token": "\"(VALUE\""}
|
99995 |
+
{"id": 99994, "token": "\" Burnett\""}
|
99996 |
+
{"id": 99995, "token": "\",void\""}
|
99997 |
+
{"id": 99996, "token": "\" danh\""}
|
99998 |
+
{"id": 99997, "token": "\" ccp\""}
|
99999 |
+
{"id": 99998, "token": "\"Blockchain\""}
|
100000 |
+
{"id": 99999, "token": "\":\\\"-\\\"`\\n\""}
|
100001 |
+
{"id": 100000, "token": "\"IClient\""}
|
100002 |
+
{"id": 100001, "token": "\"ISODE\""}
|
100003 |
+
{"id": 100002, "token": "\"Issuer\""}
|
100004 |
+
{"id": 100003, "token": "\")}\\r\\n\""}
|
100005 |
+
{"id": 100004, "token": "\",but\""}
|
100006 |
+
{"id": 100005, "token": "\" Uph\""}
|
100007 |
+
{"id": 100006, "token": "\"(Sub\""}
|
100008 |
+
{"id": 100007, "token": "\" t\\u00e9l\\u00e9phone\""}
|
100009 |
+
{"id": 100008, "token": "\" onDataChange\""}
|
100010 |
+
{"id": 100009, "token": "\" marshaller\""}
|
100011 |
+
{"id": 100010, "token": "\"-analytics\""}
|
100012 |
+
{"id": 100011, "token": "\",content\""}
|
100013 |
+
{"id": 100012, "token": "\" debacle\""}
|
100014 |
+
{"id": 100013, "token": "\"_ValueChanged\""}
|
100015 |
+
{"id": 100014, "token": "\" fauna\""}
|
100016 |
+
{"id": 100015, "token": "\" #=>\""}
|
100017 |
+
{"id": 100016, "token": "\" foyer\""}
|
100018 |
+
{"id": 100017, "token": "\"'utilisation\""}
|
100019 |
+
{"id": 100018, "token": "\" M\\u00fcller\""}
|
100020 |
+
{"id": 100019, "token": "\" Fetish\""}
|
100021 |
+
{"id": 100020, "token": "\" defaultManager\""}
|
100022 |
+
{"id": 100021, "token": "\" backtrack\""}
|
100023 |
+
{"id": 100022, "token": "\"Bah\""}
|
100024 |
+
{"id": 100023, "token": "\"Explicit\""}
|
100025 |
+
{"id": 100024, "token": "\"_ASCII\""}
|
100026 |
+
{"id": 100025, "token": "\" mActivity\""}
|
100027 |
+
{"id": 100026, "token": "\"(Msg\""}
|
100028 |
+
{"id": 100027, "token": "\" \\uac8c\""}
|
100029 |
+
{"id": 100028, "token": "\" TERMS\""}
|
100030 |
+
{"id": 100029, "token": "\" Angie\""}
|
100031 |
+
{"id": 100030, "token": "\"HSV\""}
|
100032 |
+
{"id": 100031, "token": "\" Mosque\""}
|
100033 |
+
{"id": 100032, "token": "\".Names\""}
|
100034 |
+
{"id": 100033, "token": "\"\\ud2bc\""}
|
100035 |
+
{"id": 100034, "token": "\"reste\""}
|
100036 |
+
{"id": 100035, "token": "\"_parms\""}
|
100037 |
+
{"id": 100036, "token": "\" gaping\""}
|
100038 |
+
{"id": 100037, "token": "\" cropping\""}
|
100039 |
+
{"id": 100038, "token": "\"DataFrame\""}
|
100040 |
+
{"id": 100039, "token": "\" responsiveness\""}
|
100041 |
+
{"id": 100040, "token": "\"_undo\""}
|
100042 |
+
{"id": 100041, "token": "\"_tran\""}
|
100043 |
+
{"id": 100042, "token": "\".terminate\""}
|
100044 |
+
{"id": 100043, "token": "\" italiane\""}
|
100045 |
+
{"id": 100044, "token": "\" walkthrough\""}
|
100046 |
+
{"id": 100045, "token": "\" attractiveness\""}
|
100047 |
+
{"id": 100046, "token": "\"\\u0434\\u0435\""}
|
100048 |
+
{"id": 100047, "token": "\"_STS\""}
|
100049 |
+
{"id": 100048, "token": "\"_learn\""}
|
100050 |
+
{"id": 100049, "token": "\" chocolates\""}
|
100051 |
+
{"id": 100050, "token": "\"ierarchical\""}
|
100052 |
+
{"id": 100051, "token": "\"-thinking\""}
|
100053 |
+
{"id": 100052, "token": "\" )))\""}
|
100054 |
+
{"id": 100053, "token": "\"ishments\""}
|
100055 |
+
{"id": 100054, "token": "\".Logf\""}
|
100056 |
+
{"id": 100055, "token": "\" TMZ\""}
|
100057 |
+
{"id": 100056, "token": "\" Canary\""}
|
100058 |
+
{"id": 100057, "token": "\"foil\""}
|
100059 |
+
{"id": 100058, "token": "\" Vaccine\""}
|
100060 |
+
{"id": 100059, "token": "\".vx\""}
|
100061 |
+
{"id": 100060, "token": "\" Surround\""}
|
100062 |
+
{"id": 100061, "token": "\"Intermediate\""}
|
100063 |
+
{"id": 100062, "token": "\" iov\""}
|
100064 |
+
{"id": 100063, "token": "\"vais\""}
|
100065 |
+
{"id": 100064, "token": "\"';\\\";\\n\""}
|
100066 |
+
{"id": 100065, "token": "\"\\uff5e\\n\\n\""}
|
100067 |
+
{"id": 100066, "token": "\"\\u9001\\u6599\""}
|
100068 |
+
{"id": 100067, "token": "\"\\u2026it\""}
|
100069 |
+
{"id": 100068, "token": "\"Seats\""}
|
100070 |
+
{"id": 100069, "token": "\"Clar\""}
|
100071 |
+
{"id": 100070, "token": "\"Wars\""}
|
100072 |
+
{"id": 100071, "token": "\" Hutchinson\""}
|
100073 |
+
{"id": 100072, "token": "\" Hasan\""}
|
100074 |
+
{"id": 100073, "token": "\"!')\\n\\n\""}
|
100075 |
+
{"id": 100074, "token": "\" Richie\""}
|
100076 |
+
{"id": 100075, "token": "\"cheiden\""}
|
100077 |
+
{"id": 100076, "token": "\"($('\""}
|
100078 |
+
{"id": 100077, "token": "\"York\""}
|
100079 |
+
{"id": 100078, "token": "\" lids\""}
|
100080 |
+
{"id": 100079, "token": "\" alphanumeric\""}
|
100081 |
+
{"id": 100080, "token": "\" Glock\""}
|
100082 |
+
{"id": 100081, "token": "\".shapes\""}
|
100083 |
+
{"id": 100082, "token": "\" sparking\""}
|
100084 |
+
{"id": 100083, "token": "\"_epsilon\""}
|
100085 |
+
{"id": 100084, "token": "\"uplicated\""}
|
100086 |
+
{"id": 100085, "token": "\".dirty\""}
|
100087 |
+
{"id": 100086, "token": "\"])==\""}
|
100088 |
+
{"id": 100087, "token": "\" \\uc704\\uce58\""}
|
100089 |
+
{"id": 100088, "token": "\" scn\""}
|
100090 |
+
{"id": 100089, "token": "\" /****************************************************************\""}
|
100091 |
+
{"id": 100090, "token": "\"_PREVIEW\""}
|
100092 |
+
{"id": 100091, "token": "\"_HC\""}
|
100093 |
+
{"id": 100092, "token": "\"ielding\""}
|
100094 |
+
{"id": 100093, "token": "\"fgets\""}
|
100095 |
+
{"id": 100094, "token": "\" Addison\""}
|
100096 |
+
{"id": 100095, "token": "\" productService\""}
|
100097 |
+
{"id": 100096, "token": "\"-figure\""}
|
100098 |
+
{"id": 100097, "token": "\"(retval\""}
|
100099 |
+
{"id": 100098, "token": "\"zano\""}
|
100100 |
+
{"id": 100099, "token": "\" autob\""}
|
100101 |
+
{"id": 100100, "token": "\"\\tsd\""}
|
100102 |
+
{"id": 100101, "token": "\"_numer\""}
|
100103 |
+
{"id": 100102, "token": "\" SetLastError\""}
|
100104 |
+
{"id": 100103, "token": "\" Fior\""}
|
100105 |
+
{"id": 100104, "token": "\"ificance\""}
|
100106 |
+
{"id": 100105, "token": "\"Untitled\""}
|
100107 |
+
{"id": 100106, "token": "\" infield\""}
|
100108 |
+
{"id": 100107, "token": "\" {}));\\n\""}
|
100109 |
+
{"id": 100108, "token": "\" spac\""}
|
100110 |
+
{"id": 100109, "token": "\" rookies\""}
|
100111 |
+
{"id": 100110, "token": "\"(describing\""}
|
100112 |
+
{"id": 100111, "token": "\"ngen\""}
|
100113 |
+
{"id": 100112, "token": "\"\\u0bbf\\ufffd\""}
|
100114 |
+
{"id": 100113, "token": "\".rdf\""}
|
100115 |
+
{"id": 100114, "token": "\".Mutex\""}
|
100116 |
+
{"id": 100115, "token": "\" kneeling\""}
|
100117 |
+
{"id": 100116, "token": "\" QE\""}
|
100118 |
+
{"id": 100117, "token": "\"setMax\""}
|
100119 |
+
{"id": 100118, "token": "\"ReadStream\""}
|
100120 |
+
{"id": 100119, "token": "\" ventas\""}
|
100121 |
+
{"id": 100120, "token": "\"sut\""}
|
100122 |
+
{"id": 100121, "token": "\"cmpeq\""}
|
100123 |
+
{"id": 100122, "token": "\".WriteAllText\""}
|
100124 |
+
{"id": 100123, "token": "\" Experienced\""}
|
100125 |
+
{"id": 100124, "token": "\"$__\""}
|
100126 |
+
{"id": 100125, "token": "\" kaum\""}
|
100127 |
+
{"id": 100126, "token": "\" LIS\""}
|
100128 |
+
{"id": 100127, "token": "\" documentos\""}
|
100129 |
+
{"id": 100128, "token": "\"_HEALTH\""}
|
100130 |
+
{"id": 100129, "token": "\"icontains\""}
|
100131 |
+
{"id": 100130, "token": "\" artisans\""}
|
100132 |
+
{"id": 100131, "token": "\"OWNER\""}
|
100133 |
+
{"id": 100132, "token": "\" blinked\""}
|
100134 |
+
{"id": 100133, "token": "\"getDisplay\""}
|
100135 |
+
{"id": 100134, "token": "\" toen\""}
|
100136 |
+
{"id": 100135, "token": "\" rowNum\""}
|
100137 |
+
{"id": 100136, "token": "\" avril\""}
|
100138 |
+
{"id": 100137, "token": "\" invis\""}
|
100139 |
+
{"id": 100138, "token": "\" Kear\""}
|
100140 |
+
{"id": 100139, "token": "\"toBeInTheDocument\""}
|
100141 |
+
{"id": 100140, "token": "\"apur\""}
|
100142 |
+
{"id": 100141, "token": "\" racked\""}
|
100143 |
+
{"id": 100142, "token": "\" McMaster\""}
|
100144 |
+
{"id": 100143, "token": "\"_ATTRIB\""}
|
100145 |
+
{"id": 100144, "token": "\"Haz\""}
|
100146 |
+
{"id": 100145, "token": "\" factura\""}
|
100147 |
+
{"id": 100146, "token": "\"/ts\""}
|
100148 |
+
{"id": 100147, "token": "\" \\u0440\\u0430\\u0437\\u043c\\u0435\\u0440\""}
|
100149 |
+
{"id": 100148, "token": "\" zf\""}
|
100150 |
+
{"id": 100149, "token": "\" shortfall\""}
|
100151 |
+
{"id": 100150, "token": "\".fasta\""}
|
100152 |
+
{"id": 100151, "token": "\" CONSTANT\""}
|
100153 |
+
{"id": 100152, "token": "\".managed\""}
|
100154 |
+
{"id": 100153, "token": "\"gems\""}
|
100155 |
+
{"id": 100154, "token": "\"SharedPointer\""}
|
100156 |
+
{"id": 100155, "token": "\" blurry\""}
|
100157 |
+
{"id": 100156, "token": "\"brightness\""}
|
100158 |
+
{"id": 100157, "token": "\"(components\""}
|
100159 |
+
{"id": 100158, "token": "\" ...\\\"\\n\\n\""}
|
100160 |
+
{"id": 100159, "token": "\"SELL\""}
|
100161 |
+
{"id": 100160, "token": "\" Illustrator\""}
|
100162 |
+
{"id": 100161, "token": "\".getChannel\""}
|
100163 |
+
{"id": 100162, "token": "\" trouv\\u00e9\""}
|
100164 |
+
{"id": 100163, "token": "\"ysters\""}
|
100165 |
+
{"id": 100164, "token": "\" vois\""}
|
100166 |
+
{"id": 100165, "token": "\" Linden\""}
|
100167 |
+
{"id": 100166, "token": "\" emojis\""}
|
100168 |
+
{"id": 100167, "token": "\" brawl\""}
|
100169 |
+
{"id": 100168, "token": "\" MSR\""}
|
100170 |
+
{"id": 100169, "token": "\" Elo\""}
|
100171 |
+
{"id": 100170, "token": "\" Croatian\""}
|
100172 |
+
{"id": 100171, "token": "\"PopupMenu\""}
|
100173 |
+
{"id": 100172, "token": "\"Lewis\""}
|
100174 |
+
{"id": 100173, "token": "\".JWT\""}
|
100175 |
+
{"id": 100174, "token": "\" astonished\""}
|
100176 |
+
{"id": 100175, "token": "\"Bush\""}
|
100177 |
+
{"id": 100176, "token": "\"(itemId\""}
|
100178 |
+
{"id": 100177, "token": "\" detachment\""}
|
100179 |
+
{"id": 100178, "token": "\" Encore\""}
|
100180 |
+
{"id": 100179, "token": "\"\\u5c14\""}
|
100181 |
+
{"id": 100180, "token": "\" rekl\""}
|
100182 |
+
{"id": 100181, "token": "\" cram\""}
|
100183 |
+
{"id": 100182, "token": "\")$/\""}
|
100184 |
+
{"id": 100183, "token": "\".getHost\""}
|
100185 |
+
{"id": 100184, "token": "\"_recommend\""}
|
100186 |
+
{"id": 100185, "token": "\"-HT\""}
|
100187 |
+
{"id": 100186, "token": "\"_calibration\""}
|
100188 |
+
{"id": 100187, "token": "\"Authenticate\""}
|
100189 |
+
{"id": 100188, "token": "\".firebaseapp\""}
|
100190 |
+
{"id": 100189, "token": "\"UNIX\""}
|
100191 |
+
{"id": 100190, "token": "\"\\tCamera\""}
|
100192 |
+
{"id": 100191, "token": "\" HEAP\""}
|
100193 |
+
{"id": 100192, "token": "\"Ideal\""}
|
100194 |
+
{"id": 100193, "token": "\".office\""}
|
100195 |
+
{"id": 100194, "token": "\" goofy\""}
|
100196 |
+
{"id": 100195, "token": "\"(Symbol\""}
|
100197 |
+
{"id": 100196, "token": "\" jouer\""}
|
100198 |
+
{"id": 100197, "token": "\"_partitions\""}
|
100199 |
+
{"id": 100198, "token": "\" rapidement\""}
|
100200 |
+
{"id": 100199, "token": "\" GNUNET\""}
|
100201 |
+
{"id": 100200, "token": "\"idUser\""}
|
100202 |
+
{"id": 100201, "token": "\" supervise\""}
|
100203 |
+
{"id": 100202, "token": "\"(Contact\""}
|
100204 |
+
{"id": 100203, "token": "\"AWN\""}
|
100205 |
+
{"id": 100204, "token": "\"\\u3058\""}
|
100206 |
+
{"id": 100205, "token": "\" naam\""}
|
100207 |
+
{"id": 100206, "token": "\" aust\""}
|
100208 |
+
{"id": 100207, "token": "\"\\u5728\\u7ebf\""}
|
100209 |
+
{"id": 100208, "token": "\"_softmax\""}
|
100210 |
+
{"id": 100209, "token": "\"AllowAnonymous\""}
|
100211 |
+
{"id": 100210, "token": "\"ammable\""}
|
100212 |
+
{"id": 100211, "token": "\"ROUTE\""}
|
100213 |
+
{"id": 100212, "token": "\"*D\""}
|
100214 |
+
{"id": 100213, "token": "\" aden\""}
|
100215 |
+
{"id": 100214, "token": "\" Cristina\""}
|
100216 |
+
{"id": 100215, "token": "\" Cristiano\""}
|
100217 |
+
{"id": 100216, "token": "\" bloodstream\""}
|
100218 |
+
{"id": 100217, "token": "\"subclass\""}
|
100219 |
+
{"id": 100218, "token": "\"_persona\""}
|
100220 |
+
{"id": 100219, "token": "\"CHILD\""}
|
100221 |
+
{"id": 100220, "token": "\"-know\""}
|
100222 |
+
{"id": 100221, "token": "\" navigationOptions\""}
|
100223 |
+
{"id": 100222, "token": "\" Zukunft\""}
|
100224 |
+
{"id": 100223, "token": "\" Pixar\""}
|
100225 |
+
{"id": 100224, "token": "\"Tyler\""}
|
100226 |
+
{"id": 100225, "token": "\" underworld\""}
|
100227 |
+
{"id": 100226, "token": "\" sincerity\""}
|
100228 |
+
{"id": 100227, "token": "\" dispenser\""}
|
100229 |
+
{"id": 100228, "token": "\" kter\""}
|
100230 |
+
{"id": 100229, "token": "\"idders\""}
|
100231 |
+
{"id": 100230, "token": "\".addNode\""}
|
100232 |
+
{"id": 100231, "token": "\"-checked\""}
|
100233 |
+
{"id": 100232, "token": "\" keyst\""}
|
100234 |
+
{"id": 100233, "token": "\" WTO\""}
|
100235 |
+
{"id": 100234, "token": "\".signals\""}
|
100236 |
+
{"id": 100235, "token": "\" adventurer\""}
|
100237 |
+
{"id": 100236, "token": "\" Pang\""}
|
100238 |
+
{"id": 100237, "token": "\"\\\\R\""}
|
100239 |
+
{"id": 100238, "token": "\"=pos\""}
|
100240 |
+
{"id": 100239, "token": "\" dispensaries\""}
|
100241 |
+
{"id": 100240, "token": "\" Closet\""}
|
100242 |
+
{"id": 100241, "token": "\"(\\\"{\\\\\\\"\""}
|
100243 |
+
{"id": 100242, "token": "\"ideon\""}
|
100244 |
+
{"id": 100243, "token": "\" n\\u00e9cessaire\""}
|
100245 |
+
{"id": 100244, "token": "\"()\\\"\\n\""}
|
100246 |
+
{"id": 100245, "token": "\"_RECEIVED\""}
|
100247 |
+
{"id": 100246, "token": "\" r\\u00e9sultats\""}
|
100248 |
+
{"id": 100247, "token": "\" moden\""}
|
100249 |
+
{"id": 100248, "token": "\" Icelandic\""}
|
100250 |
+
{"id": 100249, "token": "\";d\""}
|
100251 |
+
{"id": 100250, "token": "\".allowed\""}
|
100252 |
+
{"id": 100251, "token": "\"(newUser\""}
|
100253 |
+
{"id": 100252, "token": "\" merciless\""}
|
100254 |
+
{"id": 100253, "token": "\".WaitFor\""}
|
100255 |
+
{"id": 100254, "token": "\" daycare\""}
|
100256 |
+
{"id": 100255, "token": "\" Conveyor\""}
|
100257 |
+
{"id": 100256, "token": "\"null\""}
|
100258 |
+
{"id": 100257, "token": "\"<|endoftext|>\""}
|
100259 |
+
{"id": 100258, "token": "\"<|fim_prefix|>\""}
|
100260 |
+
{"id": 100259, "token": "\"<|fim_middle|>\""}
|
100261 |
+
{"id": 100260, "token": "\"<|fim_suffix|>\""}
|
100262 |
+
{"id": 100261, "token": "\"null\""}
|
100263 |
+
{"id": 100262, "token": "\"null\""}
|
100264 |
+
{"id": 100263, "token": "\"null\""}
|
100265 |
+
{"id": 100264, "token": "\"null\""}
|
100266 |
+
{"id": 100265, "token": "\"null\""}
|
100267 |
+
{"id": 100266, "token": "\"null\""}
|
100268 |
+
{"id": 100267, "token": "\"null\""}
|
100269 |
+
{"id": 100268, "token": "\"null\""}
|
100270 |
+
{"id": 100269, "token": "\"null\""}
|
100271 |
+
{"id": 100270, "token": "\"null\""}
|
100272 |
+
{"id": 100271, "token": "\"null\""}
|
100273 |
+
{"id": 100272, "token": "\"null\""}
|
100274 |
+
{"id": 100273, "token": "\"null\""}
|
100275 |
+
{"id": 100274, "token": "\"null\""}
|
100276 |
+
{"id": 100275, "token": "\"null\""}
|
100277 |
+
{"id": 100276, "token": "\"<|endofprompt|>\""}
|
vocab/gpt_nexo_20b/README.md
CHANGED
@@ -18,11 +18,13 @@ self.padded_vocab_size = 50304
|
|
18 |
|
19 |
padded vocab (size: 50277) with 27 dummy tokens (new size: 50304)
|
20 |
|
|
|
|
|
21 |
## 词典
|
22 |
|
23 |
见 convert_vocab_to_txt.py
|
24 |
|
25 |
-
```
|
26 |
{"id": 13609, "token": "\u00e4\u00b8\u0143", "token_decode": "\u4e2d"} 中
|
27 |
|
28 |
# 多个符号拼接在一起的
|
@@ -30,8 +32,16 @@ padded vocab (size: 50277) with 27 dummy tokens (new size: 50304)
|
|
30 |
|
31 |
# ss
|
32 |
|
|
|
|
|
|
|
|
|
|
|
33 |
```
|
34 |
|
|
|
|
|
|
|
35 |
## special_tokens
|
36 |
|
37 |
https://huggingface.co/EleutherAI/gpt-neox-20b/blob/main/special_tokens_map.json
|
@@ -83,4 +93,7 @@ gpt-neox是在800G英文数据集上训练的,为啥词典支持中文?因
|
|
83 |
"ard less",
|
84 |
|
85 |
|
|
|
|
|
|
|
86 |
|
|
|
18 |
|
19 |
padded vocab (size: 50277) with 27 dummy tokens (new size: 50304)
|
20 |
|
21 |
+
|
22 |
+
|
23 |
## 词典
|
24 |
|
25 |
见 convert_vocab_to_txt.py
|
26 |
|
27 |
+
```sh
|
28 |
{"id": 13609, "token": "\u00e4\u00b8\u0143", "token_decode": "\u4e2d"} 中
|
29 |
|
30 |
# 多个符号拼接在一起的
|
|
|
32 |
|
33 |
# ss
|
34 |
|
35 |
+
|
36 |
+
|
37 |
+
# 基本字节
|
38 |
+
(\u0021-\u007E) + (\u00A1-\u0143)
|
39 |
+
|
40 |
```
|
41 |
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
## special_tokens
|
46 |
|
47 |
https://huggingface.co/EleutherAI/gpt-neox-20b/blob/main/special_tokens_map.json
|
|
|
93 |
"ard less",
|
94 |
|
95 |
|
96 |
+
## hf格式
|
97 |
+
|
98 |
+
https://huggingface.co/EleutherAI/gpt-neox-20b/tree/main
|
99 |
|
vocab/gpt_nexo_20b/test_tokenizer.py
CHANGED
@@ -12,17 +12,60 @@ print("vocab_size without added_tokens:", tokenizer.get_vocab_size(with_added_to
|
|
12 |
|
13 |
vocab = tokenizer.get_vocab()
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def test_single_token():
|
17 |
"""
|
18 |
单个字符的编码(一个字符可能会编码成多个id)
|
19 |
"""
|
20 |
-
for word in "
|
21 |
encoding = tokenizer.encode(word)
|
22 |
for token_id in encoding.ids:
|
23 |
decode_str = tokenizer.decode([token_id]) # 特殊字符解码后会统一变成 �,对应 "\ufffd"
|
24 |
token = tokenizer.id_to_token(token_id)
|
25 |
-
print(word, token_id, decode_str, json.dumps(decode_str), token, json.dumps(token))
|
26 |
|
27 |
|
28 |
def test_long_token():
|
@@ -53,6 +96,7 @@ def test_encode():
|
|
53 |
print(token_id, decode_str, json.dumps(decode_str), token, json.dumps(token))
|
54 |
|
55 |
|
56 |
-
|
|
|
57 |
# test_long_token()
|
58 |
# test_encode()
|
|
|
12 |
|
13 |
vocab = tokenizer.get_vocab()
|
14 |
|
15 |
+
def to_unicode(text):
|
16 |
+
return ''.join(r'\u{:04X}'.format(ord(chr)) for chr in text)
|
17 |
+
|
18 |
+
|
19 |
+
def is_UTF_8(str):
|
20 |
+
remain = 0 # 剩余byte数
|
21 |
+
for x in range(len(str)):
|
22 |
+
if remain == 0:
|
23 |
+
if (ord(str[x]) & 0x80) == 0x00:
|
24 |
+
remain = 0
|
25 |
+
elif (ord(str[x]) & 0xE0) == 0xC0:
|
26 |
+
remain = 1
|
27 |
+
elif (ord(str[x]) & 0xF0) == 0xE0:
|
28 |
+
remain = 2
|
29 |
+
elif (ord(str[x]) & 0xF8) == 0xF0:
|
30 |
+
remain = 3
|
31 |
+
else:
|
32 |
+
return False
|
33 |
+
else:
|
34 |
+
if not ((ord(str[x]) & 0xC0) == 0x80):
|
35 |
+
return False
|
36 |
+
remain = remain - 1
|
37 |
+
if remain == 0: # 最后如果remain不等于零,可能没有匹配完整
|
38 |
+
return True
|
39 |
+
else:
|
40 |
+
return False
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
def test_reverse():
|
45 |
+
f_out = open("reverse.jsonl", "w", encoding="utf-8")
|
46 |
+
for token_id in range(tokenizer.get_vocab_size(with_added_tokens=False)):
|
47 |
+
token = tokenizer.id_to_token(token_id)
|
48 |
+
print(token_id, is_UTF_8(token))
|
49 |
+
if "Ġ" in token:
|
50 |
+
continue
|
51 |
+
|
52 |
+
|
53 |
+
encoding = tokenizer.encode(token)
|
54 |
+
if len(encoding.ids) > 1 or encoding.ids[0] != token_id:
|
55 |
+
f_out.write(json.dumps({"id": token_id, "token": token, "encoding": encoding.ids, "is_utf8": is_UTF_8(token), "isalpha": token.isalpha()}) + "\n")
|
56 |
+
|
57 |
+
|
58 |
|
59 |
def test_single_token():
|
60 |
"""
|
61 |
单个字符的编码(一个字符可能会编码成多个id)
|
62 |
"""
|
63 |
+
for word in "发大厦三分赛中国解决方法黑白侗鸩,。!?;ĠABC":
|
64 |
encoding = tokenizer.encode(word)
|
65 |
for token_id in encoding.ids:
|
66 |
decode_str = tokenizer.decode([token_id]) # 特殊字符解码后会统一变成 �,对应 "\ufffd"
|
67 |
token = tokenizer.id_to_token(token_id)
|
68 |
+
print(word, token_id, decode_str, json.dumps(decode_str), token, json.dumps(token), token.encode("utf-8"), bytes(token, "utf-8"), to_unicode(token))
|
69 |
|
70 |
|
71 |
def test_long_token():
|
|
|
96 |
print(token_id, decode_str, json.dumps(decode_str), token, json.dumps(token))
|
97 |
|
98 |
|
99 |
+
test_reverse()
|
100 |
+
# test_single_token()
|
101 |
# test_long_token()
|
102 |
# test_encode()
|
vocab/gpt_nexo_20b/tokenzier_hf/README.md
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
|
2 |
-
## hf格式
|
3 |
-
|
4 |
-
https://huggingface.co/EleutherAI/gpt-neox-20b/tree/main
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vocab/jamba_v0_1/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""
|
3 |
+
|
4 |
+
Jamba-v0.1
|
5 |
+
"""
|
6 |
+
|
7 |
+
from transformers import AutoTokenizer
|
8 |
+
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("ai21labs/Jamba-v0.1")
|
vocab/kplug/__init__.py
CHANGED
@@ -2,4 +2,4 @@
|
|
2 |
from transformers import BertTokenizer
|
3 |
|
4 |
tokenizer = BertTokenizer.from_pretrained("eson/kplug-base-encoder")
|
5 |
-
|
|
|
2 |
from transformers import BertTokenizer
|
3 |
|
4 |
tokenizer = BertTokenizer.from_pretrained("eson/kplug-base-encoder")
|
5 |
+
|
vocab/llama/gpt_neox/get_oov_zh_tokens.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
|
2 |
-
from utils.zh_util import
|
3 |
from transformers import LlamaTokenizer
|
4 |
llama_vocab = LlamaTokenizer.from_pretrained("../tokenizer").get_vocab()
|
5 |
|
@@ -14,7 +14,7 @@ for token, token_id in vocab.items():
|
|
14 |
# token = token.strip("Ġ")
|
15 |
if len(token) < 1:
|
16 |
continue
|
17 |
-
if
|
18 |
if token not in llama_vocab:
|
19 |
f_out.write(token + "\n")
|
20 |
|
|
|
1 |
|
2 |
+
from utils.zh_util import is_zh_char
|
3 |
from transformers import LlamaTokenizer
|
4 |
llama_vocab = LlamaTokenizer.from_pretrained("../tokenizer").get_vocab()
|
5 |
|
|
|
14 |
# token = token.strip("Ġ")
|
15 |
if len(token) < 1:
|
16 |
continue
|
17 |
+
if is_zh_char(token[0]):
|
18 |
if token not in llama_vocab:
|
19 |
f_out.write(token + "\n")
|
20 |
|
vocab/llama3/Meta-Llama-3-70B/special_tokens_map.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<|begin_of_text|>",
|
3 |
+
"eos_token": "<|end_of_text|>"
|
4 |
+
}
|
vocab/llama3/Meta-Llama-3-70B/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ac333c83e2d107910928928b5912d8ade91594d08c7c73c4606d05c032d7632
|
3 |
+
size 9084463
|
vocab/llama3/Meta-Llama-3-70B/tokenizer_config.json
ADDED
@@ -0,0 +1,2062 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"128000": {
|
4 |
+
"content": "<|begin_of_text|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"128001": {
|
12 |
+
"content": "<|end_of_text|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"128002": {
|
20 |
+
"content": "<|reserved_special_token_0|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"128003": {
|
28 |
+
"content": "<|reserved_special_token_1|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128004": {
|
36 |
+
"content": "<|reserved_special_token_2|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128005": {
|
44 |
+
"content": "<|reserved_special_token_3|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128006": {
|
52 |
+
"content": "<|start_header_id|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128007": {
|
60 |
+
"content": "<|end_header_id|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128008": {
|
68 |
+
"content": "<|reserved_special_token_4|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128009": {
|
76 |
+
"content": "<|eot_id|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128010": {
|
84 |
+
"content": "<|reserved_special_token_5|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128011": {
|
92 |
+
"content": "<|reserved_special_token_6|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128012": {
|
100 |
+
"content": "<|reserved_special_token_7|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128013": {
|
108 |
+
"content": "<|reserved_special_token_8|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128014": {
|
116 |
+
"content": "<|reserved_special_token_9|>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128015": {
|
124 |
+
"content": "<|reserved_special_token_10|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128016": {
|
132 |
+
"content": "<|reserved_special_token_11|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128017": {
|
140 |
+
"content": "<|reserved_special_token_12|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128018": {
|
148 |
+
"content": "<|reserved_special_token_13|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128019": {
|
156 |
+
"content": "<|reserved_special_token_14|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128020": {
|
164 |
+
"content": "<|reserved_special_token_15|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128021": {
|
172 |
+
"content": "<|reserved_special_token_16|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128022": {
|
180 |
+
"content": "<|reserved_special_token_17|>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128023": {
|
188 |
+
"content": "<|reserved_special_token_18|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128024": {
|
196 |
+
"content": "<|reserved_special_token_19|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128025": {
|
204 |
+
"content": "<|reserved_special_token_20|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128026": {
|
212 |
+
"content": "<|reserved_special_token_21|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128027": {
|
220 |
+
"content": "<|reserved_special_token_22|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128028": {
|
228 |
+
"content": "<|reserved_special_token_23|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128029": {
|
236 |
+
"content": "<|reserved_special_token_24|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128030": {
|
244 |
+
"content": "<|reserved_special_token_25|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128031": {
|
252 |
+
"content": "<|reserved_special_token_26|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128032": {
|
260 |
+
"content": "<|reserved_special_token_27|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128033": {
|
268 |
+
"content": "<|reserved_special_token_28|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128034": {
|
276 |
+
"content": "<|reserved_special_token_29|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128035": {
|
284 |
+
"content": "<|reserved_special_token_30|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128036": {
|
292 |
+
"content": "<|reserved_special_token_31|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128037": {
|
300 |
+
"content": "<|reserved_special_token_32|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128038": {
|
308 |
+
"content": "<|reserved_special_token_33|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128039": {
|
316 |
+
"content": "<|reserved_special_token_34|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128040": {
|
324 |
+
"content": "<|reserved_special_token_35|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128041": {
|
332 |
+
"content": "<|reserved_special_token_36|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128042": {
|
340 |
+
"content": "<|reserved_special_token_37|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128043": {
|
348 |
+
"content": "<|reserved_special_token_38|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128044": {
|
356 |
+
"content": "<|reserved_special_token_39|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128045": {
|
364 |
+
"content": "<|reserved_special_token_40|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128046": {
|
372 |
+
"content": "<|reserved_special_token_41|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128047": {
|
380 |
+
"content": "<|reserved_special_token_42|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128048": {
|
388 |
+
"content": "<|reserved_special_token_43|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128049": {
|
396 |
+
"content": "<|reserved_special_token_44|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128050": {
|
404 |
+
"content": "<|reserved_special_token_45|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128051": {
|
412 |
+
"content": "<|reserved_special_token_46|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128052": {
|
420 |
+
"content": "<|reserved_special_token_47|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128053": {
|
428 |
+
"content": "<|reserved_special_token_48|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128054": {
|
436 |
+
"content": "<|reserved_special_token_49|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128055": {
|
444 |
+
"content": "<|reserved_special_token_50|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128056": {
|
452 |
+
"content": "<|reserved_special_token_51|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128057": {
|
460 |
+
"content": "<|reserved_special_token_52|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128058": {
|
468 |
+
"content": "<|reserved_special_token_53|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128059": {
|
476 |
+
"content": "<|reserved_special_token_54|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128060": {
|
484 |
+
"content": "<|reserved_special_token_55|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128061": {
|
492 |
+
"content": "<|reserved_special_token_56|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128062": {
|
500 |
+
"content": "<|reserved_special_token_57|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128063": {
|
508 |
+
"content": "<|reserved_special_token_58|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128064": {
|
516 |
+
"content": "<|reserved_special_token_59|>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128065": {
|
524 |
+
"content": "<|reserved_special_token_60|>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128066": {
|
532 |
+
"content": "<|reserved_special_token_61|>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128067": {
|
540 |
+
"content": "<|reserved_special_token_62|>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128068": {
|
548 |
+
"content": "<|reserved_special_token_63|>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128069": {
|
556 |
+
"content": "<|reserved_special_token_64|>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128070": {
|
564 |
+
"content": "<|reserved_special_token_65|>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128071": {
|
572 |
+
"content": "<|reserved_special_token_66|>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128072": {
|
580 |
+
"content": "<|reserved_special_token_67|>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128073": {
|
588 |
+
"content": "<|reserved_special_token_68|>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128074": {
|
596 |
+
"content": "<|reserved_special_token_69|>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128075": {
|
604 |
+
"content": "<|reserved_special_token_70|>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128076": {
|
612 |
+
"content": "<|reserved_special_token_71|>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128077": {
|
620 |
+
"content": "<|reserved_special_token_72|>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128078": {
|
628 |
+
"content": "<|reserved_special_token_73|>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128079": {
|
636 |
+
"content": "<|reserved_special_token_74|>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128080": {
|
644 |
+
"content": "<|reserved_special_token_75|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128081": {
|
652 |
+
"content": "<|reserved_special_token_76|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128082": {
|
660 |
+
"content": "<|reserved_special_token_77|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128083": {
|
668 |
+
"content": "<|reserved_special_token_78|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128084": {
|
676 |
+
"content": "<|reserved_special_token_79|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128085": {
|
684 |
+
"content": "<|reserved_special_token_80|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128086": {
|
692 |
+
"content": "<|reserved_special_token_81|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128087": {
|
700 |
+
"content": "<|reserved_special_token_82|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128088": {
|
708 |
+
"content": "<|reserved_special_token_83|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128089": {
|
716 |
+
"content": "<|reserved_special_token_84|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128090": {
|
724 |
+
"content": "<|reserved_special_token_85|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128091": {
|
732 |
+
"content": "<|reserved_special_token_86|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128092": {
|
740 |
+
"content": "<|reserved_special_token_87|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128093": {
|
748 |
+
"content": "<|reserved_special_token_88|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128094": {
|
756 |
+
"content": "<|reserved_special_token_89|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128095": {
|
764 |
+
"content": "<|reserved_special_token_90|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128096": {
|
772 |
+
"content": "<|reserved_special_token_91|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128097": {
|
780 |
+
"content": "<|reserved_special_token_92|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128098": {
|
788 |
+
"content": "<|reserved_special_token_93|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128099": {
|
796 |
+
"content": "<|reserved_special_token_94|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128100": {
|
804 |
+
"content": "<|reserved_special_token_95|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128101": {
|
812 |
+
"content": "<|reserved_special_token_96|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128102": {
|
820 |
+
"content": "<|reserved_special_token_97|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128103": {
|
828 |
+
"content": "<|reserved_special_token_98|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"128104": {
|
836 |
+
"content": "<|reserved_special_token_99|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"128105": {
|
844 |
+
"content": "<|reserved_special_token_100|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"128106": {
|
852 |
+
"content": "<|reserved_special_token_101|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"128107": {
|
860 |
+
"content": "<|reserved_special_token_102|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"128108": {
|
868 |
+
"content": "<|reserved_special_token_103|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"128109": {
|
876 |
+
"content": "<|reserved_special_token_104|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"128110": {
|
884 |
+
"content": "<|reserved_special_token_105|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"128111": {
|
892 |
+
"content": "<|reserved_special_token_106|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"128112": {
|
900 |
+
"content": "<|reserved_special_token_107|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"128113": {
|
908 |
+
"content": "<|reserved_special_token_108|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"128114": {
|
916 |
+
"content": "<|reserved_special_token_109|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"128115": {
|
924 |
+
"content": "<|reserved_special_token_110|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"128116": {
|
932 |
+
"content": "<|reserved_special_token_111|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"128117": {
|
940 |
+
"content": "<|reserved_special_token_112|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"128118": {
|
948 |
+
"content": "<|reserved_special_token_113|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"128119": {
|
956 |
+
"content": "<|reserved_special_token_114|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"128120": {
|
964 |
+
"content": "<|reserved_special_token_115|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"128121": {
|
972 |
+
"content": "<|reserved_special_token_116|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"128122": {
|
980 |
+
"content": "<|reserved_special_token_117|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"128123": {
|
988 |
+
"content": "<|reserved_special_token_118|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"128124": {
|
996 |
+
"content": "<|reserved_special_token_119|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"128125": {
|
1004 |
+
"content": "<|reserved_special_token_120|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"128126": {
|
1012 |
+
"content": "<|reserved_special_token_121|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"128127": {
|
1020 |
+
"content": "<|reserved_special_token_122|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"128128": {
|
1028 |
+
"content": "<|reserved_special_token_123|>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"128129": {
|
1036 |
+
"content": "<|reserved_special_token_124|>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"128130": {
|
1044 |
+
"content": "<|reserved_special_token_125|>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"128131": {
|
1052 |
+
"content": "<|reserved_special_token_126|>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"128132": {
|
1060 |
+
"content": "<|reserved_special_token_127|>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"128133": {
|
1068 |
+
"content": "<|reserved_special_token_128|>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"128134": {
|
1076 |
+
"content": "<|reserved_special_token_129|>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"128135": {
|
1084 |
+
"content": "<|reserved_special_token_130|>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"128136": {
|
1092 |
+
"content": "<|reserved_special_token_131|>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"128137": {
|
1100 |
+
"content": "<|reserved_special_token_132|>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"128138": {
|
1108 |
+
"content": "<|reserved_special_token_133|>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"128139": {
|
1116 |
+
"content": "<|reserved_special_token_134|>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"128140": {
|
1124 |
+
"content": "<|reserved_special_token_135|>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"128141": {
|
1132 |
+
"content": "<|reserved_special_token_136|>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"128142": {
|
1140 |
+
"content": "<|reserved_special_token_137|>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"128143": {
|
1148 |
+
"content": "<|reserved_special_token_138|>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"128144": {
|
1156 |
+
"content": "<|reserved_special_token_139|>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"128145": {
|
1164 |
+
"content": "<|reserved_special_token_140|>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"128146": {
|
1172 |
+
"content": "<|reserved_special_token_141|>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"128147": {
|
1180 |
+
"content": "<|reserved_special_token_142|>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"128148": {
|
1188 |
+
"content": "<|reserved_special_token_143|>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"128149": {
|
1196 |
+
"content": "<|reserved_special_token_144|>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"128150": {
|
1204 |
+
"content": "<|reserved_special_token_145|>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"128151": {
|
1212 |
+
"content": "<|reserved_special_token_146|>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"128152": {
|
1220 |
+
"content": "<|reserved_special_token_147|>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"128153": {
|
1228 |
+
"content": "<|reserved_special_token_148|>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"128154": {
|
1236 |
+
"content": "<|reserved_special_token_149|>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"128155": {
|
1244 |
+
"content": "<|reserved_special_token_150|>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"128156": {
|
1252 |
+
"content": "<|reserved_special_token_151|>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"128157": {
|
1260 |
+
"content": "<|reserved_special_token_152|>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"128158": {
|
1268 |
+
"content": "<|reserved_special_token_153|>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"128159": {
|
1276 |
+
"content": "<|reserved_special_token_154|>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"128160": {
|
1284 |
+
"content": "<|reserved_special_token_155|>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"128161": {
|
1292 |
+
"content": "<|reserved_special_token_156|>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"128162": {
|
1300 |
+
"content": "<|reserved_special_token_157|>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"128163": {
|
1308 |
+
"content": "<|reserved_special_token_158|>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"128164": {
|
1316 |
+
"content": "<|reserved_special_token_159|>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"128165": {
|
1324 |
+
"content": "<|reserved_special_token_160|>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"128166": {
|
1332 |
+
"content": "<|reserved_special_token_161|>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"128167": {
|
1340 |
+
"content": "<|reserved_special_token_162|>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"128168": {
|
1348 |
+
"content": "<|reserved_special_token_163|>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"128169": {
|
1356 |
+
"content": "<|reserved_special_token_164|>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"128170": {
|
1364 |
+
"content": "<|reserved_special_token_165|>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"128171": {
|
1372 |
+
"content": "<|reserved_special_token_166|>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"128172": {
|
1380 |
+
"content": "<|reserved_special_token_167|>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"128173": {
|
1388 |
+
"content": "<|reserved_special_token_168|>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"128174": {
|
1396 |
+
"content": "<|reserved_special_token_169|>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"128175": {
|
1404 |
+
"content": "<|reserved_special_token_170|>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"128176": {
|
1412 |
+
"content": "<|reserved_special_token_171|>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"128177": {
|
1420 |
+
"content": "<|reserved_special_token_172|>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"128178": {
|
1428 |
+
"content": "<|reserved_special_token_173|>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"128179": {
|
1436 |
+
"content": "<|reserved_special_token_174|>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"128180": {
|
1444 |
+
"content": "<|reserved_special_token_175|>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"128181": {
|
1452 |
+
"content": "<|reserved_special_token_176|>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"128182": {
|
1460 |
+
"content": "<|reserved_special_token_177|>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"128183": {
|
1468 |
+
"content": "<|reserved_special_token_178|>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"128184": {
|
1476 |
+
"content": "<|reserved_special_token_179|>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"128185": {
|
1484 |
+
"content": "<|reserved_special_token_180|>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"128186": {
|
1492 |
+
"content": "<|reserved_special_token_181|>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"128187": {
|
1500 |
+
"content": "<|reserved_special_token_182|>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"128188": {
|
1508 |
+
"content": "<|reserved_special_token_183|>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"128189": {
|
1516 |
+
"content": "<|reserved_special_token_184|>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"128190": {
|
1524 |
+
"content": "<|reserved_special_token_185|>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"128191": {
|
1532 |
+
"content": "<|reserved_special_token_186|>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"128192": {
|
1540 |
+
"content": "<|reserved_special_token_187|>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"128193": {
|
1548 |
+
"content": "<|reserved_special_token_188|>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"128194": {
|
1556 |
+
"content": "<|reserved_special_token_189|>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"128195": {
|
1564 |
+
"content": "<|reserved_special_token_190|>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"128196": {
|
1572 |
+
"content": "<|reserved_special_token_191|>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"128197": {
|
1580 |
+
"content": "<|reserved_special_token_192|>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"128198": {
|
1588 |
+
"content": "<|reserved_special_token_193|>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"128199": {
|
1596 |
+
"content": "<|reserved_special_token_194|>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"128200": {
|
1604 |
+
"content": "<|reserved_special_token_195|>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"128201": {
|
1612 |
+
"content": "<|reserved_special_token_196|>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"128202": {
|
1620 |
+
"content": "<|reserved_special_token_197|>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"128203": {
|
1628 |
+
"content": "<|reserved_special_token_198|>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"128204": {
|
1636 |
+
"content": "<|reserved_special_token_199|>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"128205": {
|
1644 |
+
"content": "<|reserved_special_token_200|>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"128206": {
|
1652 |
+
"content": "<|reserved_special_token_201|>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"128207": {
|
1660 |
+
"content": "<|reserved_special_token_202|>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"128208": {
|
1668 |
+
"content": "<|reserved_special_token_203|>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"128209": {
|
1676 |
+
"content": "<|reserved_special_token_204|>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"128210": {
|
1684 |
+
"content": "<|reserved_special_token_205|>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"128211": {
|
1692 |
+
"content": "<|reserved_special_token_206|>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"128212": {
|
1700 |
+
"content": "<|reserved_special_token_207|>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"128213": {
|
1708 |
+
"content": "<|reserved_special_token_208|>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"128214": {
|
1716 |
+
"content": "<|reserved_special_token_209|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"128215": {
|
1724 |
+
"content": "<|reserved_special_token_210|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"128216": {
|
1732 |
+
"content": "<|reserved_special_token_211|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
},
|
1739 |
+
"128217": {
|
1740 |
+
"content": "<|reserved_special_token_212|>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": true
|
1746 |
+
},
|
1747 |
+
"128218": {
|
1748 |
+
"content": "<|reserved_special_token_213|>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": true
|
1754 |
+
},
|
1755 |
+
"128219": {
|
1756 |
+
"content": "<|reserved_special_token_214|>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": true
|
1762 |
+
},
|
1763 |
+
"128220": {
|
1764 |
+
"content": "<|reserved_special_token_215|>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": true
|
1770 |
+
},
|
1771 |
+
"128221": {
|
1772 |
+
"content": "<|reserved_special_token_216|>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": true
|
1778 |
+
},
|
1779 |
+
"128222": {
|
1780 |
+
"content": "<|reserved_special_token_217|>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": true
|
1786 |
+
},
|
1787 |
+
"128223": {
|
1788 |
+
"content": "<|reserved_special_token_218|>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": true
|
1794 |
+
},
|
1795 |
+
"128224": {
|
1796 |
+
"content": "<|reserved_special_token_219|>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": true
|
1802 |
+
},
|
1803 |
+
"128225": {
|
1804 |
+
"content": "<|reserved_special_token_220|>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": true
|
1810 |
+
},
|
1811 |
+
"128226": {
|
1812 |
+
"content": "<|reserved_special_token_221|>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": true
|
1818 |
+
},
|
1819 |
+
"128227": {
|
1820 |
+
"content": "<|reserved_special_token_222|>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": true
|
1826 |
+
},
|
1827 |
+
"128228": {
|
1828 |
+
"content": "<|reserved_special_token_223|>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": true
|
1834 |
+
},
|
1835 |
+
"128229": {
|
1836 |
+
"content": "<|reserved_special_token_224|>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": true
|
1842 |
+
},
|
1843 |
+
"128230": {
|
1844 |
+
"content": "<|reserved_special_token_225|>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": true
|
1850 |
+
},
|
1851 |
+
"128231": {
|
1852 |
+
"content": "<|reserved_special_token_226|>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": true
|
1858 |
+
},
|
1859 |
+
"128232": {
|
1860 |
+
"content": "<|reserved_special_token_227|>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": true
|
1866 |
+
},
|
1867 |
+
"128233": {
|
1868 |
+
"content": "<|reserved_special_token_228|>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": true
|
1874 |
+
},
|
1875 |
+
"128234": {
|
1876 |
+
"content": "<|reserved_special_token_229|>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": true
|
1882 |
+
},
|
1883 |
+
"128235": {
|
1884 |
+
"content": "<|reserved_special_token_230|>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": true
|
1890 |
+
},
|
1891 |
+
"128236": {
|
1892 |
+
"content": "<|reserved_special_token_231|>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": true
|
1898 |
+
},
|
1899 |
+
"128237": {
|
1900 |
+
"content": "<|reserved_special_token_232|>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": true
|
1906 |
+
},
|
1907 |
+
"128238": {
|
1908 |
+
"content": "<|reserved_special_token_233|>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": true
|
1914 |
+
},
|
1915 |
+
"128239": {
|
1916 |
+
"content": "<|reserved_special_token_234|>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": true
|
1922 |
+
},
|
1923 |
+
"128240": {
|
1924 |
+
"content": "<|reserved_special_token_235|>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": true
|
1930 |
+
},
|
1931 |
+
"128241": {
|
1932 |
+
"content": "<|reserved_special_token_236|>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": true
|
1938 |
+
},
|
1939 |
+
"128242": {
|
1940 |
+
"content": "<|reserved_special_token_237|>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": true
|
1946 |
+
},
|
1947 |
+
"128243": {
|
1948 |
+
"content": "<|reserved_special_token_238|>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": true
|
1954 |
+
},
|
1955 |
+
"128244": {
|
1956 |
+
"content": "<|reserved_special_token_239|>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": true
|
1962 |
+
},
|
1963 |
+
"128245": {
|
1964 |
+
"content": "<|reserved_special_token_240|>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": true
|
1970 |
+
},
|
1971 |
+
"128246": {
|
1972 |
+
"content": "<|reserved_special_token_241|>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": true
|
1978 |
+
},
|
1979 |
+
"128247": {
|
1980 |
+
"content": "<|reserved_special_token_242|>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": true
|
1986 |
+
},
|
1987 |
+
"128248": {
|
1988 |
+
"content": "<|reserved_special_token_243|>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": true
|
1994 |
+
},
|
1995 |
+
"128249": {
|
1996 |
+
"content": "<|reserved_special_token_244|>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": true
|
2002 |
+
},
|
2003 |
+
"128250": {
|
2004 |
+
"content": "<|reserved_special_token_245|>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": true
|
2010 |
+
},
|
2011 |
+
"128251": {
|
2012 |
+
"content": "<|reserved_special_token_246|>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": true
|
2018 |
+
},
|
2019 |
+
"128252": {
|
2020 |
+
"content": "<|reserved_special_token_247|>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": true
|
2026 |
+
},
|
2027 |
+
"128253": {
|
2028 |
+
"content": "<|reserved_special_token_248|>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": true
|
2034 |
+
},
|
2035 |
+
"128254": {
|
2036 |
+
"content": "<|reserved_special_token_249|>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": true
|
2042 |
+
},
|
2043 |
+
"128255": {
|
2044 |
+
"content": "<|reserved_special_token_250|>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": true
|
2050 |
+
}
|
2051 |
+
},
|
2052 |
+
"bos_token": "<|begin_of_text|>",
|
2053 |
+
"chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
|
2054 |
+
"clean_up_tokenization_spaces": true,
|
2055 |
+
"eos_token": "<|end_of_text|>",
|
2056 |
+
"model_input_names": [
|
2057 |
+
"input_ids",
|
2058 |
+
"attention_mask"
|
2059 |
+
],
|
2060 |
+
"model_max_length": 1000000000000000019884624838656,
|
2061 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
2062 |
+
}
|
vocab/llama3/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import os
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
|
6 |
+
|
7 |
+
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
|
8 |
+
TOKENIZER_DIR = os.path.join(CURRENT_DIR, "Meta-Llama-3-70B")
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_DIR, trust_remote_code=True)
|
vocab/mobilenet_v2/__init__.py
CHANGED
@@ -7,6 +7,10 @@
|
|
7 |
File "/home/user/.local/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py", line 748, in __getitem__
|
8 |
raise KeyError(key)
|
9 |
KeyError: <class 'transformers.models.mobilenet_v2.configuration_mobilenet_v2.MobileNetV2Config'>
|
|
|
|
|
|
|
|
|
10 |
"""
|
11 |
|
12 |
from transformers import AutoTokenizer
|
|
|
7 |
File "/home/user/.local/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py", line 748, in __getitem__
|
8 |
raise KeyError(key)
|
9 |
KeyError: <class 'transformers.models.mobilenet_v2.configuration_mobilenet_v2.MobileNetV2Config'>
|
10 |
+
|
11 |
+
## how to fix?
|
12 |
+
|
13 |
+
|
14 |
"""
|
15 |
|
16 |
from transformers import AutoTokenizer
|
vocab/moss/test_zh_coding_len.py
CHANGED
@@ -16,7 +16,7 @@
|
|
16 |
from collections import Counter
|
17 |
from transformers import AutoTokenizer
|
18 |
from data_sample.oov_base import jd_vocab_tokens
|
19 |
-
from utils.text_util import
|
20 |
from zhon.hanzi import punctuation as zh_punc
|
21 |
|
22 |
tokenizer = AutoTokenizer.from_pretrained("tokenizer", trust_remote_code=True)
|
@@ -56,7 +56,7 @@ def iter_vocab():
|
|
56 |
zh_symbol_count = 0
|
57 |
for idx in range(len(vocab)):
|
58 |
decode_str = tokenizer.decode([idx])
|
59 |
-
if
|
60 |
zh_token_count["total"] += 1
|
61 |
if len(decode_str.strip()) > 1:
|
62 |
zh_token_count["中文多字"] += 1
|
|
|
16 |
from collections import Counter
|
17 |
from transformers import AutoTokenizer
|
18 |
from data_sample.oov_base import jd_vocab_tokens
|
19 |
+
from utils.text_util import is_zh_char, has_zh
|
20 |
from zhon.hanzi import punctuation as zh_punc
|
21 |
|
22 |
tokenizer = AutoTokenizer.from_pretrained("tokenizer", trust_remote_code=True)
|
|
|
56 |
zh_symbol_count = 0
|
57 |
for idx in range(len(vocab)):
|
58 |
decode_str = tokenizer.decode([idx])
|
59 |
+
if has_zh(decode_str):
|
60 |
zh_token_count["total"] += 1
|
61 |
if len(decode_str.strip()) > 1:
|
62 |
zh_token_count["中文多字"] += 1
|