xu-song's picture
update
751936e
raw
history blame
2.71 kB
import transformers
import importlib
from enum import Enum, auto
Animal = Enum('Animal', 'ANT BEE CAT DOG')
uniq_tokenizers = [
""
]
all_tokenizers = [
"gpt_35_turbo",
"gpt2",
"gpt2_chinese",
"bert_chinese",
"moss",
#
# ######
# "chatyuan_large_v2",
# "prompt_clue",
#
# #### bloom 系列
# "bloom",
# "bloomz_6b4_zh",
# "belle_7b_2m", # 模型和词典都基于bloom
#
"gpt_nexo_20b",
# "gpt_neox_chinese_v1",
#
# ##### glm系列
# "glm_chinese",
"chatglm",
#
# #### llama alpaca系列
"llama", # '中文单字': 700, '中文多字': 0
"chinese_llama_lora_7b", #
# "chinese_alpaca_lora_7b", # 中文Alpaca模型在上述中文LLaMA模型的基础上进一步使用了指令数据进行精调。
# "belle_llama_ext_7b",
# "alpaca_7b",
"baichuan_7b",
"qwen"
]
class TokenizerType(Enum):
"""
- https://huggingface.co./docs/transformers/tokenizer_summary
- https://github.com/EleutherAI/gpt-neox/blob/main/megatron/tokenizer/tokenizer.py
- https://github.com/google/sentencepiece/blob/3863f7648e5d8edb571ac592f3ac4f5f0695275a/src/sentencepiece_model.proto#L48
- UNIGRAM = 1; // Unigram language model with dynamic algorithm
- BPE = 2; // Byte Pair Encoding
- WORD = 3; // Delimitered by whitespace.
- CHAR = 4; // tokenizes into character sequence
"""
BPE = auto()
ByteBPE = auto() # BBPE Byte-Level BPE
GPT2BPETokenizer = auto() #
BERTTokenizer = auto()
# class TokenizerType(Enum):
#
# # BERTTokenizer
# # 依赖一个txt文件
#
#
# # https://github.com/EleutherAI/gpt-neox/blob/v2.0/megatron/tokenizer/tokenizer.py#L231
# # 依赖一个json文件,Tokenizer.from_file(vocab_file)
# # 案例:gpt-neox-20B
# HFTokenizer = auto()
#
# # 依赖: model_file, sentencepiece.SentencePieceProcessor(model_file)
# # 案例:
# SentencePieceTokenizer = auto()
#
#
# # 依赖: 3个json文件:vocab.json, merges.txt, special_tokens.txt
# # 源码:
# # - https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/tokenizer/gpt2_tokenization.py#L92
# # Byte-level BPE
# GPT2BPETokenizer = auto()
class TokenizerImpl(Enum):
"""
"""
SentencePiece = auto() #
# https://github.com/huggingface/transformers/blob/v4.30.2/src/transformers/models/gpt2/tokenization_gpt2.py#L104
# 构造词典:
#
GPT2Tokenizer = auto()
BertTokenizer = auto() #
def load_tokener(model_name):
tokenizer = importlib.import_module("." + model_name, 'vocab').tokenizer
return tokenizer
if __name__ == "__main__":
pass