xu-song's picture
update
751936e
raw
history blame
5.03 kB
# coding=utf-8
# author: xusong
# time: 2022/8/23 16:06
"""
plots
table
## related demo
http://text-processing.com/demo/tokenize/
## 可视化
[ The, 2, QUICK, Brown, Foxes, jumped, over, the, lazy, dog's, bone ]
"""
import json
import pandas as pd
import gradio as gr
from vocab import all_tokenizers, load_tokener
# 显示空格:https://blog.csdn.net/liuxiao723846/article/details/118994673
# 隐藏legend:
css = """
.space-show {white-space: pre-wrap;}
.cell-wrap {white-space: pre-wrap;}
.category-legend {display: none !important}
"""
example_text = """中文测试:华为智能音箱发布:华为Sound X。維基百科由非營利組織──維基媒體基金會負責維持
标点测试:,。!?;
空格测试: 2个空格 8个空格
数字测试:(10086 + 98) = 100184"""
def tokenize(text, tokenizer_type):
print(text, tokenizer_type)
pos_tokens = []
tokenizer = load_tokener(tokenizer_type)
encoding = tokenizer.encode(text)
table = []
for idx, token_id in enumerate(encoding):
decode_text = tokenizer.decode([token_id]) # 特殊字符解码后会统一变成 �,对应 "\ufffd"
pos_tokens.extend([(decode_text, str(idx % 3))])
# token "Byte": # 这是 utf-8编码吧?
token = tokenizer.convert_ids_to_tokens([token_id])[0]
if isinstance(token, bytes):
token_str = token.decode("utf-8")
token_bytes = token
json_dumps = json.dumps(token_str)
elif isinstance(token, str):
token_str = token
token_bytes = bytes(token_str, "utf-8")
json_dumps = json.dumps(token_str)
else:
return
table.append(
{"TokenID": token_id,
"Token": token_str, # utf-8解码后的字符串,为什么有些是 <0xE7>,表示什么?比如llama
"Text": decode_text, #
# "Bytes": token_bytes, # bytes类型在gradio前端页面被解码成字符串,比如 b'\xe4\xb8\xad' 仍然显示成 "中"。因此 str(token_bytes)
"Bytes": str(token_bytes),
# "Unicode": json_dumps # unicode, 如果是ascii码,就直接显示。如果不是ascii码,就显示unicode
}
)
table_df = pd.DataFrame(table)
print(table)
print(table_df)
return pos_tokens, table_df
def test_coding():
bytes1 = b'\xe4\xb8\xad'
print(bytes1) # b'\xe4\xb8\xad'
with gr.Blocks(css=css) as demo:
gr.HTML("""<h1 align="center">Tokenizer Arena</h1>""")
# links: https://www.coderstool.com/utf8-encoding-decoding
#
user_input = gr.Textbox(
value=example_text,
lines=5
) # placeholder="Enter sentence here..."
# submitBtn = gr.Button("生成回复", variant="primary")
# TODO: 图 表 压缩率
# llama chatglm gpt_nexo_20b baichuan baichuan_7b
with gr.Row():
with gr.Column():
tokenizer_type_1 = gr.Dropdown(
all_tokenizers, value="llama", label="tokenizer"
)
token_counter_1 = None # 计数器
output_text_1 = gr.Highlightedtext(
label="Tokenization",
show_legend=True,
elem_classes="space-show"
)
output_table_1 = gr.Dataframe(
headers=["TokenID", "Byte", "Text"],
datatype=["str", "str", "str"],
#elem_classes="space-show", # 给整个Dataframe加这个css不起作用,因此直接修改cell-wrap
)
with gr.Column():
tokenizer_type_2 = gr.Dropdown(
all_tokenizers, value="baichuan_7b", label="tokenizer"
)
token_counter_2 = None # 计数器
output_text_2 = gr.Highlightedtext(
label="Tokenization",
show_legend=True,
elem_classes="space-show"
)
output_table_2 = gr.Dataframe(
headers=["TokenID", "Token", "Text"],
datatype=["str", "str", "str"],
)
user_input.change(tokenize,
[user_input, tokenizer_type_1],
[output_text_1, output_table_1])
tokenizer_type_1.change(tokenize, [user_input, tokenizer_type_1], [output_text_1, output_table_1])
user_input.change(tokenize,
[user_input, tokenizer_type_2],
[output_text_2, output_table_2])
tokenizer_type_2.change(tokenize, [user_input, tokenizer_type_2], [output_text_2, output_table_2])
# submitBtn.click(tokenize, [user_input, tokenizer_type], outputs,
# show_progress=True)
# examples=[
# ["What a beautiful morning for a walk!"],
# ["It was the best of times, it was the worst of times."],
# ["多个空格 It ss was the best of times, it was the worst of times."],
# ]
if __name__ == "__main__":
demo.launch()