Spaces:
Sleeping
Sleeping
yeshpanovrustem
commited on
Commit
•
8d8fdc8
1
Parent(s):
e363ad3
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,99 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
|
4 |
# use @st.cache decorator to cache model — because it is too large, we do not want to reload it every time
|
5 |
# use allow_output_mutation = True to tell streamlit that model should be treated as immutable object — singleton
|
6 |
-
|
7 |
|
8 |
# load model and tokenizer
|
9 |
-
tokenizer =
|
10 |
-
model =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# # define function for ner
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
# st.markdown("# Hello")
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
3 |
|
4 |
# use @st.cache decorator to cache model — because it is too large, we do not want to reload it every time
|
5 |
# use allow_output_mutation = True to tell streamlit that model should be treated as immutable object — singleton
|
6 |
+
@st.cache(allow_output_mutation = True)
|
7 |
|
8 |
# load model and tokenizer
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("yeshpanovrustem/xlm-roberta-large-ner-kazakh")
|
10 |
+
model = AutoModelForTokenClassification.from_pretrained("yeshpanovrustem/xlm-roberta-large-ner-kazakh")
|
11 |
+
|
12 |
+
labels_dict = {0: 'O',
|
13 |
+
1: 'B-ADAGE',
|
14 |
+
2: 'I-ADAGE',
|
15 |
+
3: 'B-ART',
|
16 |
+
4: 'I-ART',
|
17 |
+
5: 'B-CARDINAL',
|
18 |
+
6: 'I-CARDINAL',
|
19 |
+
7: 'B-CONTACT',
|
20 |
+
8: 'I-CONTACT',
|
21 |
+
9: 'B-DATE',
|
22 |
+
10: 'I-DATE',
|
23 |
+
11: 'B-DISEASE',
|
24 |
+
12: 'I-DISEASE',
|
25 |
+
13: 'B-EVENT',
|
26 |
+
14: 'I-EVENT',
|
27 |
+
15: 'B-FACILITY',
|
28 |
+
16: 'I-FACILITY',
|
29 |
+
17: 'B-GPE',
|
30 |
+
18: 'I-GPE',
|
31 |
+
19: 'B-LANGUAGE',
|
32 |
+
20: 'I-LANGUAGE',
|
33 |
+
21: 'B-LAW',
|
34 |
+
22: 'I-LAW',
|
35 |
+
23: 'B-LOCATION',
|
36 |
+
24: 'I-LOCATION',
|
37 |
+
25: 'B-MISCELLANEOUS',
|
38 |
+
26: 'I-MISCELLANEOUS',
|
39 |
+
27: 'B-MONEY',
|
40 |
+
28: 'I-MONEY',
|
41 |
+
29: 'B-NON_HUMAN',
|
42 |
+
30: 'I-NON_HUMAN',
|
43 |
+
31: 'B-NORP',
|
44 |
+
32: 'I-NORP',
|
45 |
+
33: 'B-ORDINAL',
|
46 |
+
34: 'I-ORDINAL',
|
47 |
+
35: 'B-ORGANISATION',
|
48 |
+
36: 'I-ORGANISATION',
|
49 |
+
37: 'B-PERSON',
|
50 |
+
38: 'I-PERSON',
|
51 |
+
39: 'B-PERCENTAGE',
|
52 |
+
40: 'I-PERCENTAGE',
|
53 |
+
41: 'B-POSITION',
|
54 |
+
42: 'I-POSITION',
|
55 |
+
43: 'B-PRODUCT',
|
56 |
+
44: 'I-PRODUCT',
|
57 |
+
45: 'B-PROJECT',
|
58 |
+
46: 'I-PROJECT',
|
59 |
+
47: 'B-QUANTITY',
|
60 |
+
48: 'I-QUANTITY',
|
61 |
+
49: 'B-TIME',
|
62 |
+
50: 'I-TIME'}
|
63 |
|
64 |
# # define function for ner
|
65 |
+
# def label_sentence(text):
|
66 |
+
# load pipeline
|
67 |
+
nlp = pipeline("ner", model = model, tokenizer = tokenizer)
|
68 |
+
example = "Қазақстан Республикасы — Шығыс Еуропа мен Орталық Азияда орналасқан мемлекет."
|
69 |
+
|
70 |
+
single_sentence_tokens = word_tokenize(example)
|
71 |
+
tokenized_input = tokenizer(single_sentence_tokens, is_split_into_words = True, return_tensors = "pt")
|
72 |
+
tokens = tokenized_input.tokens()
|
73 |
+
output = model(**tokenized_input).logits
|
74 |
+
predictions = torch.argmax(output, dim = 2)
|
75 |
+
|
76 |
+
# convert label IDs to label names
|
77 |
+
word_ids = tokenized_input.word_ids(batch_index = 0)
|
78 |
+
# print(count, word_ids)
|
79 |
+
previous_word_id = None
|
80 |
+
labels = []
|
81 |
+
for token, word_id, prediction in zip(tokens, word_ids, predictions[0].numpy()):
|
82 |
+
# # Special tokens have a word id that is None. We set the label to -100 so they are
|
83 |
+
# # automatically ignored in the loss function.
|
84 |
+
# print(token, word_id, prediction)
|
85 |
+
if word_id is None or word_id == previous_word_id:
|
86 |
+
continue
|
87 |
+
elif word_id != previous_word_id:
|
88 |
+
labels.append(labels_dict[prediction])
|
89 |
+
previous_word_id = word_id
|
90 |
+
# print(len(sentence_tokens), sentence_tokens)
|
91 |
+
# print(len(labels), labels)
|
92 |
+
assert len(single_sentence_tokens) == len(labels), "Mismatch between input token and label sizes!"
|
93 |
+
|
94 |
+
for token, label in zip(single_sentence_tokens, labels):
|
95 |
+
print(token, label)
|
96 |
+
|
97 |
|
98 |
|
99 |
# st.markdown("# Hello")
|