LivePortrait / app.py
yerang's picture
Update app.py
e8da26b verified
raw
history blame
10.2 kB
# coding: utf-8
"""
The entrance of the gradio
"""
import tyro
import gradio as gr
import os.path as osp
from src.utils.helper import load_description
from src.gradio_pipeline import GradioPipeline
from src.config.crop_config import CropConfig
from src.config.argument_config import ArgumentConfig
from src.config.inference_config import InferenceConfig
import spaces
import cv2
# import gdown
# folder_url = f"https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib"
# gdown.download_folder(url=folder_url, output="pretrained_weights", quiet=False)
# import sys
# sys.path.append('/home/user/.local/lib/python3.10/site-packages')
# sys.path.append('/home/user/.local/lib/python3.10/site-packages/stf_alternative/src/stf_alternative')
# sys.path.append('/home/user/.local/lib/python3.10/site-packages/stf_tools/src/stf_tools')
# sys.path.append('/home/user/app/')
# sys.path.append('/home/user/app/stf/')
# sys.path.append('/home/user/app/stf/stf_alternative/')
# sys.path.append('/home/user/app/stf/stf_alternative/src/stf_alternative')
# sys.path.append('/home/user/app/stf/stf_tools')
# sys.path.append('/home/user/app/stf/stf_tools/src/stf_tools')
# # CUDA 경로를 환경 변수로 설정
# os.environ['PATH'] = '/usr/local/cuda/bin:' + os.environ.get('PATH', '')
# os.environ['LD_LIBRARY_PATH'] = '/usr/local/cuda/lib64:' + os.environ.get('LD_LIBRARY_PATH', '')
# # 확인용 출력
# print("PATH:", os.environ['PATH'])
# print("LD_LIBRARY_PATH:", os.environ['LD_LIBRARY_PATH'])
# from stf_utils import STFPipeline
def partial_fields(target_class, kwargs):
return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)})
# set tyro theme
tyro.extras.set_accent_color("bright_cyan")
args = tyro.cli(ArgumentConfig)
# specify configs for inference
inference_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig
crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig
gradio_pipeline = GradioPipeline(
inference_cfg=inference_cfg,
crop_cfg=crop_cfg,
args=args
)
@spaces.GPU(duration=240)
def gpu_wrapped_execute_video(*args, **kwargs):
return gradio_pipeline.execute_video(*args, **kwargs)
@spaces.GPU(duration=240)
def gpu_wrapped_execute_image(*args, **kwargs):
return gradio_pipeline.execute_image(*args, **kwargs)
def is_square_video(video_path):
video = cv2.VideoCapture(video_path)
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
video.release()
if width != height:
raise gr.Error("Error: the video does not have a square aspect ratio. We currently only support square videos")
return gr.update(visible=True)
# assets
title_md = "assets/gradio_title.md"
example_portrait_dir = "assets/examples/source"
example_video_dir = "assets/examples/driving"
data_examples = [
[osp.join(example_portrait_dir, "s9.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True],
[osp.join(example_portrait_dir, "s6.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True],
[osp.join(example_portrait_dir, "s10.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True],
[osp.join(example_portrait_dir, "s5.jpg"), osp.join(example_video_dir, "d18.mp4"), True, True, True, True],
[osp.join(example_portrait_dir, "s7.jpg"), osp.join(example_video_dir, "d19.mp4"), True, True, True, True],
[osp.join(example_portrait_dir, "s22.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True],
]
#################### interface logic ####################
# Define components first
eye_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target eyes-open ratio")
lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target lip-open ratio")
retargeting_input_image = gr.Image(type="filepath")
output_image = gr.Image(type="numpy")
output_image_paste_back = gr.Image(type="numpy")
output_video = gr.Video()
output_video_concat = gr.Video()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.HTML(load_description(title_md))
gr.Markdown(load_description("assets/gradio_description_upload.md"))
with gr.Row():
with gr.Accordion(open=True, label="Source Portrait"):
image_input = gr.Image(type="filepath")
gr.Examples(
examples=[
[osp.join(example_portrait_dir, "s9.jpg")],
[osp.join(example_portrait_dir, "s6.jpg")],
[osp.join(example_portrait_dir, "s10.jpg")],
[osp.join(example_portrait_dir, "s5.jpg")],
[osp.join(example_portrait_dir, "s7.jpg")],
[osp.join(example_portrait_dir, "s12.jpg")],
[osp.join(example_portrait_dir, "s22.jpg")],
],
inputs=[image_input],
cache_examples=False,
)
with gr.Accordion(open=True, label="Driving Video"):
video_input = gr.Video()
gr.Examples(
examples=[
[osp.join(example_video_dir, "d0.mp4")],
[osp.join(example_video_dir, "d18.mp4")],
[osp.join(example_video_dir, "d19.mp4")],
[osp.join(example_video_dir, "d14_trim.mp4")],
[osp.join(example_video_dir, "d6_trim.mp4")],
],
inputs=[video_input],
cache_examples=False,
)
with gr.Row():
with gr.Accordion(open=False, label="Animation Instructions and Options"):
gr.Markdown(load_description("assets/gradio_description_animation.md"))
with gr.Row():
flag_relative_input = gr.Checkbox(value=True, label="relative motion")
flag_do_crop_input = gr.Checkbox(value=True, label="do crop")
flag_remap_input = gr.Checkbox(value=True, label="paste-back")
gr.Markdown(load_description("assets/gradio_description_animate_clear.md"))
with gr.Row():
with gr.Column():
process_button_animation = gr.Button("🚀 Animate", variant="primary")
with gr.Column():
process_button_reset = gr.ClearButton([image_input, video_input, output_video, output_video_concat], value="🧹 Clear")
with gr.Row():
with gr.Column():
with gr.Accordion(open=True, label="The animated video in the original image space"):
output_video.render()
with gr.Column():
with gr.Accordion(open=True, label="The animated video"):
output_video_concat.render()
with gr.Row():
# Examples
gr.Markdown("## You could also choose the examples below by one click ⬇️")
with gr.Row():
gr.Examples(
examples=data_examples,
fn=gpu_wrapped_execute_video,
inputs=[
image_input,
video_input,
flag_relative_input,
flag_do_crop_input,
flag_remap_input
],
outputs=[output_image, output_image_paste_back],
examples_per_page=6,
cache_examples=False,
)
gr.Markdown(load_description("assets/gradio_description_retargeting.md"), visible=True)
with gr.Row(visible=True):
eye_retargeting_slider.render()
lip_retargeting_slider.render()
with gr.Row(visible=True):
process_button_retargeting = gr.Button("🚗 Retargeting", variant="primary")
process_button_reset_retargeting = gr.ClearButton(
[
eye_retargeting_slider,
lip_retargeting_slider,
retargeting_input_image,
output_image,
output_image_paste_back
],
value="🧹 Clear"
)
with gr.Row(visible=True):
with gr.Column():
with gr.Accordion(open=True, label="Retargeting Input"):
retargeting_input_image.render()
gr.Examples(
examples=[
[osp.join(example_portrait_dir, "s9.jpg")],
[osp.join(example_portrait_dir, "s6.jpg")],
[osp.join(example_portrait_dir, "s10.jpg")],
[osp.join(example_portrait_dir, "s5.jpg")],
[osp.join(example_portrait_dir, "s7.jpg")],
[osp.join(example_portrait_dir, "s12.jpg")],
[osp.join(example_portrait_dir, "s22.jpg")],
],
inputs=[retargeting_input_image],
cache_examples=False,
)
with gr.Column():
with gr.Accordion(open=True, label="Retargeting Result"):
output_image.render()
with gr.Column():
with gr.Accordion(open=True, label="Paste-back Result"):
output_image_paste_back.render()
# binding functions for buttons
process_button_retargeting.click(
# fn=gradio_pipeline.execute_image,
fn=gpu_wrapped_execute_image,
inputs=[eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image, flag_do_crop_input],
outputs=[output_image, output_image_paste_back],
show_progress=True
)
process_button_animation.click(
fn=gpu_wrapped_execute_video,
inputs=[
image_input,
video_input,
flag_relative_input,
flag_do_crop_input,
flag_remap_input
],
outputs=[output_video, output_video_concat],
show_progress=True
)
# image_input.change(
# fn=gradio_pipeline.prepare_retargeting,
# inputs=image_input,
# outputs=[eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image]
# )
video_input.upload(
fn=is_square_video,
inputs=video_input,
outputs=video_input
)
demo.launch(
server_port=args.server_port,
share=args.share,
server_name=args.server_name
)