import os import json import numpy as np import torch import clip from tqdm import tqdm from vbench.utils import load_video, load_dimension_info, clip_transform, read_frames_decord_by_fps, CACHE_DIR from vbench.third_party.ViCLIP.viclip import ViCLIP from vbench.third_party.ViCLIP.simple_tokenizer import SimpleTokenizer def get_text_features(model, input_text, tokenizer, text_feature_dict={}): if input_text in text_feature_dict: return text_feature_dict[input_text] text_template= f"{input_text}" with torch.no_grad(): text_features = model.encode_text(text_template).float() text_features /= text_features.norm(dim=-1, keepdim=True) text_feature_dict[input_text] = text_features return text_features def get_vid_features(model, input_frames): with torch.no_grad(): clip_feat = model.encode_vision(input_frames,test=True).float() clip_feat /= clip_feat.norm(dim=-1, keepdim=True) return clip_feat def get_predict_label(clip_feature, text_feats_tensor, top=5): label_probs = (100.0 * clip_feature @ text_feats_tensor.T).softmax(dim=-1) top_probs, top_labels = label_probs.cpu().topk(top, dim=-1) return top_probs, top_labels def temporal_style(clip_model, video_dict, tokenizer, device, sample="middle"): sim = [] video_results = [] image_transform = clip_transform(224) for info in tqdm(video_dict): query = info['prompt'] text = clip.tokenize([query]).to(device) video_list = info['video_list'] for video_path in video_list: cur_video = [] with torch.no_grad(): # images = load_video(video_path, num_frames=8) images = read_frames_decord_by_fps(video_path, num_frames=8, sample=sample) images = image_transform(images) images = images.to(device) clip_feat = get_vid_features(clip_model,images.unsqueeze(0)) text_feat = get_text_features(clip_model, query, tokenizer) logit_per_text = clip_feat @ text_feat.T score_per_video = float(logit_per_text[0][0].cpu()) sim.append(score_per_video) video_results.append({'video_path': video_path, 'video_results': score_per_video}) avg_score = np.mean(sim) return avg_score, video_results def compute_temporal_style(json_dir, device, submodules_list): tokenizer = SimpleTokenizer(os.path.join(CACHE_DIR, "ViCLIP/bpe_simple_vocab_16e6.txt.gz")) viclip = ViCLIP(tokenizer= tokenizer, **submodules_list).to(device) _, video_dict = load_dimension_info(json_dir, dimension='temporal_style', lang='en') all_results, video_results = temporal_style(viclip, video_dict, tokenizer, device) return all_results, video_results