import os import json import numpy as np from tqdm import tqdm import torch import clip from PIL import Image from vbench.utils import load_video, load_dimension_info, clip_transform, read_frames_decord_by_fps, clip_transform_Image def get_text_features(model, input_text, tokenizer, text_feature_dict={}): if input_text in text_feature_dict: return text_feature_dict[input_text] text_template= f"{input_text}" with torch.no_grad(): text_features = model.encode_text(text_template).float() text_features /= text_features.norm(dim=-1, keepdim=True) text_feature_dict[input_text] = text_features return text_features def get_vid_features(model, input_frames): with torch.no_grad(): clip_feat = model.encode_vision(input_frames,test=True).float() clip_feat /= clip_feat.norm(dim=-1, keepdim=True) return clip_feat def get_predict_label(clip_feature, text_feats_tensor, top=5): label_probs = (100.0 * clip_feature @ text_feats_tensor.T).softmax(dim=-1) top_probs, top_labels = label_probs.cpu().topk(top, dim=-1) return top_probs, top_labels def appearance_style(clip_model, video_dict, device, sample="rand"): sim = 0.0 cnt = 0 video_results = [] image_transform = clip_transform_Image(224) for info in tqdm(video_dict): if 'auxiliary_info' not in info: raise "Auxiliary info is not in json, please check your json." query = info['auxiliary_info']['appearance_style'] text = clip.tokenize([query]).to(device) video_list = info['video_list'] for video_path in video_list: cur_video = [] with torch.no_grad(): video_arrays = load_video(video_path, return_tensor=False) images = [Image.fromarray(i) for i in video_arrays] for image in images: image = image_transform(image) image = image.to(device) logits_per_image, logits_per_text = clip_model(image.unsqueeze(0), text) cur_sim = float(logits_per_text[0][0].cpu()) cur_sim = cur_sim / 100 cur_video.append(cur_sim) sim += cur_sim cnt +=1 video_sim = np.mean(cur_video) video_results.append({'video_path': video_path, 'video_results': video_sim, 'frame_results':cur_video}) sim_per_frame = sim / cnt return sim_per_frame, video_results def compute_appearance_style(json_dir, device, submodules_list): clip_model, preprocess = clip.load(device=device, **submodules_list) _, video_dict = load_dimension_info(json_dir, dimension='appearance_style', lang='en') all_results, video_results = appearance_style(clip_model, video_dict, device) return all_results, video_results