Spaces:
Runtime error
Runtime error
import os | |
import json | |
import torch | |
import numpy as np | |
from tqdm import tqdm | |
from vbench.utils import load_video, load_dimension_info, read_frames_decord_by_fps | |
from vbench.third_party.grit_model import DenseCaptioning | |
import logging | |
logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
def get_dect_from_grit(model, image_arrays): | |
pred = [] | |
if type(image_arrays) is not list and type(image_arrays) is not np.ndarray: | |
image_arrays = image_arrays.numpy() | |
with torch.no_grad(): | |
for frame in image_arrays: | |
ret = model.run_caption_tensor(frame) | |
cur_pred = [] | |
if len(ret[0])<1: | |
cur_pred.append(['','']) | |
else: | |
for idx, cap_det in enumerate(ret[0]): | |
cur_pred.append([cap_det[0], cap_det[2][0]]) | |
pred.append(cur_pred) | |
return pred | |
def check_generate(color_key, object_key, predictions): | |
cur_object_color, cur_object = 0, 0 | |
for frame_pred in predictions: | |
object_flag, color_flag = False, False | |
for pred in frame_pred: | |
if object_key == pred[1]: | |
for color_query in ["white","red","pink","blue","silver","purple","orange","green","gray","yellow","black","grey"]: | |
if color_query in pred[0]: | |
object_flag =True | |
if color_key in pred[0]: | |
color_flag = True | |
if color_flag: | |
cur_object_color+=1 | |
if object_flag: | |
cur_object +=1 | |
return cur_object, cur_object_color | |
def color(model, video_dict, device): | |
success_frame_count_all, video_count = 0, 0 | |
video_results = [] | |
for info in tqdm(video_dict): | |
if 'auxiliary_info' not in info: | |
raise "Auxiliary info is not in json, please check your json." | |
# print(info) | |
color_info = info['auxiliary_info']['color'] | |
object_info = info['prompt'] | |
object_info = object_info.replace('a ','').replace('an ','').replace(color_info,'').strip() | |
for video_path in info['video_list']: | |
video_arrays = load_video(video_path, num_frames=16, return_tensor=False) | |
cur_video_pred = get_dect_from_grit(model ,video_arrays) | |
cur_object, cur_object_color = check_generate(color_info, object_info, cur_video_pred) | |
if cur_object>0: | |
cur_success_frame_rate = cur_object_color/cur_object | |
success_frame_count_all += cur_success_frame_rate | |
video_count += 1 | |
video_results.append({'video_path': video_path, 'video_results': cur_success_frame_rate}) | |
success_rate = success_frame_count_all / video_count | |
return success_rate, video_results | |
def compute_color(json_dir, device, submodules_dict): | |
dense_caption_model = DenseCaptioning(device) | |
dense_caption_model.initialize_model(**submodules_dict) | |
logger.info("Initialize detection model success") | |
_, prompt_dict_ls = load_dimension_info(json_dir, dimension='color', lang='en') | |
all_results, video_results = color(dense_caption_model, prompt_dict_ls, device) | |
return all_results, video_results | |