Spaces:
Runtime error
Runtime error
import os | |
import json | |
import logging | |
import numpy as np | |
import clip | |
from PIL import Image | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from vbench.utils import load_video, load_dimension_info, clip_transform | |
from tqdm import tqdm | |
def background_consistency(clip_model, preprocess, video_list, device, read_frame): | |
sim = 0.0 | |
cnt = 0 | |
video_results = [] | |
image_transform = clip_transform(224) | |
for video_path in tqdm(video_list): | |
video_sim = 0.0 | |
if read_frame: | |
video_path = video_path[:-4].replace('videos', 'frames').replace(' ', '_') | |
tmp_paths = [os.path.join(video_path, f) for f in sorted(os.listdir(video_path))] | |
images = [] | |
for tmp_path in tmp_paths: | |
images.append(preprocess(Image.open(tmp_path))) | |
images = torch.stack(images) | |
else: | |
images = load_video(video_path) | |
images = image_transform(images) | |
images = images.to(device) | |
image_features = clip_model.encode_image(images) | |
image_features = F.normalize(image_features, dim=-1, p=2) | |
for i in range(len(image_features)): | |
image_feature = image_features[i].unsqueeze(0) | |
if i == 0: | |
first_image_feature = image_feature | |
else: | |
sim_pre = max(0.0, F.cosine_similarity(former_image_feature, image_feature).item()) | |
sim_fir = max(0.0, F.cosine_similarity(first_image_feature, image_feature).item()) | |
cur_sim = (sim_pre + sim_fir) / 2 | |
video_sim += cur_sim | |
cnt += 1 | |
former_image_feature = image_feature | |
sim_per_image = video_sim / (len(image_features) - 1) | |
sim += video_sim | |
video_results.append({'video_path': video_path, 'video_results': sim_per_image}) | |
sim_per_video = sim / (len(video_list) - 1) | |
sim_per_frame = sim / cnt | |
return sim_per_frame, video_results | |
def compute_background_consistency(json_dir, device, submodules_list): | |
vit_path, read_frame = submodules_list[0], submodules_list[1] | |
clip_model, preprocess = clip.load(vit_path, device=device) | |
video_list, _ = load_dimension_info(json_dir, dimension='background_consistency', lang='en') | |
all_results, video_results = background_consistency(clip_model, preprocess, video_list, device, read_frame) | |
return all_results, video_results | |