Spaces:
Runtime error
Runtime error
import os | |
from .utils import init_submodules, save_json, load_json | |
import importlib | |
class VBench(object): | |
def __init__(self, device, full_info_dir, output_path): | |
self.device = device # cuda or cpu | |
self.full_info_dir = full_info_dir # full json file that VBench originally provides | |
self.output_path = output_path # output directory to save VBench results | |
if not os.path.exists(self.output_path): | |
os.makedirs(self.output_path, exist_ok=False) | |
def build_full_dimension_list(self, ): | |
return ["subject_consistency", "background_consistency", "aesthetic_quality", "imaging_quality", "object_class", "multiple_objects", "color", "spatial_relationship", "scene", "temporal_style", 'overall_consistency', "human_action", "temporal_flickering", "motion_smoothness", "dynamic_degree", "appearance_style"] | |
def build_full_info_json(self, videos_path, name, dimension_list, special_str='', verbose=False, custom_prompt=False): | |
full_info_list = load_json(self.full_info_dir) | |
cur_full_info_list=[] # to save the prompt and video path info for the current dimensions | |
if custom_prompt: | |
dim_custom_not_supported = set(dimension_list) & set([ | |
'background_consistency', 'object_class', 'multiple_objects', 'scene', 'appearance_style', 'color', 'spatial_relationship' | |
]) | |
assert len(dim_custom_not_supported) == 0, f"dimensions : {dim_custom_not_supported} not supported for custom input" | |
dimension_list = [dim for dim in dimension_list if dim not in dim_custom_not_supported] | |
if os.path.isfile(videos_path): | |
cur_full_info_list = [{"prompt_en": videos_path.split(".")[:-1], "dimension": dimension_list, "video_list": [videos_path]}] | |
else: | |
video_names = os.listdir(videos_path) | |
postfix = '.'+ video_names[0].split('.')[-1] | |
cur_full_info_list = [{'prompt_en': name, 'dimension': dimension_list, 'video_list': [os.path.join(videos_path, name)]} for name in video_names] | |
else: | |
video_names = os.listdir(videos_path) | |
postfix = '.'+ video_names[0].split('.')[-1] | |
for prompt_dict in full_info_list: | |
# if the prompt belongs to any dimension we want to evaluate | |
if set(dimension_list) & set(prompt_dict["dimension"]): | |
prompt = prompt_dict['prompt_en'] | |
prompt_dict['video_list'] = [] | |
for i in range(5): # video index for the same prompt | |
intended_video_name = f'{prompt}{special_str}-{str(i)}{postfix}' | |
if intended_video_name in video_names: # if the video exists | |
intended_video_path = os.path.join(videos_path, intended_video_name) | |
prompt_dict['video_list'].append(intended_video_path) | |
if verbose: | |
print(f'Successfully found video: {intended_video_name}') | |
else: | |
print(f'WARNING!!! This required video is not found! Missing benchmark videos can lead to unfair evaluation result. The missing video is: {intended_video_name}') | |
cur_full_info_list.append(prompt_dict) | |
cur_full_info_path = os.path.join(self.output_path, name+'_full_info.json') | |
save_json(cur_full_info_list, cur_full_info_path) | |
print(f'Evaluation meta data saved to {cur_full_info_path}') | |
return cur_full_info_path | |
def evaluate(self, videos_path, name, dimension_list=None, local=False, read_frame=False, custom_prompt=False): | |
results_dict = {} | |
if dimension_list is None: | |
dimension_list = self.build_full_dimension_list() | |
submodules_dict = init_submodules(dimension_list, local=local, read_frame=read_frame) | |
# print('BEFORE BUILDING') | |
cur_full_info_path = self.build_full_info_json(videos_path, name, dimension_list, custom_prompt=custom_prompt) | |
# print('AFTER BUILDING') | |
for dimension in dimension_list: | |
try: | |
dimension_module = importlib.import_module(f'vbench.{dimension}') | |
evaluate_func = getattr(dimension_module, f'compute_{dimension}') | |
except Exception as e: | |
raise NotImplementedError(f'UnImplemented dimension {dimension}!, {e}') | |
submodules_list = submodules_dict[dimension] | |
print(f'cur_full_info_path: {cur_full_info_path}') # TODO: to delete | |
results = evaluate_func(cur_full_info_path, self.device, submodules_list) | |
results_dict[dimension] = results | |
output_name = os.path.join(self.output_path, name+'_eval_results.json') | |
save_json(results_dict, output_name) | |
print(f'Evaluation results saved to {output_name}') | |