File size: 2,820 Bytes
04fbff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
import json
import numpy as np

import torch
import clip
from tqdm import tqdm
from vbench.utils import load_video, load_dimension_info, clip_transform, read_frames_decord_by_fps, CACHE_DIR
from vbench.third_party.ViCLIP.viclip import ViCLIP
from vbench.third_party.ViCLIP.simple_tokenizer import SimpleTokenizer

def get_text_features(model, input_text, tokenizer, text_feature_dict={}):
    if input_text in text_feature_dict:
        return text_feature_dict[input_text]
    text_template= f"{input_text}"
    with torch.no_grad():
        text_features = model.encode_text(text_template).float()
        text_features /= text_features.norm(dim=-1, keepdim=True)      
        text_feature_dict[input_text] = text_features
    return text_features

def get_vid_features(model, input_frames):
    with torch.no_grad():
        clip_feat = model.encode_vision(input_frames,test=True).float()
        clip_feat /= clip_feat.norm(dim=-1, keepdim=True)    
    return clip_feat

def get_predict_label(clip_feature, text_feats_tensor, top=5):
    label_probs = (100.0 * clip_feature @ text_feats_tensor.T).softmax(dim=-1)
    top_probs, top_labels = label_probs.cpu().topk(top, dim=-1)
    return top_probs, top_labels

def temporal_style(clip_model, video_dict, tokenizer, device, sample="middle"):
    sim = []
    video_results = []
    image_transform = clip_transform(224)
    for info in tqdm(video_dict):
        query = info['prompt']
        text = clip.tokenize([query]).to(device)
        video_list = info['video_list']
        for video_path in video_list:
            cur_video = []
            with torch.no_grad():
                # images = load_video(video_path, num_frames=8)
                images = read_frames_decord_by_fps(video_path, num_frames=8, sample=sample)
                images = image_transform(images)
                images = images.to(device)
                clip_feat = get_vid_features(clip_model,images.unsqueeze(0))
                text_feat = get_text_features(clip_model, query, tokenizer)
                logit_per_text =  clip_feat @ text_feat.T
                score_per_video =  float(logit_per_text[0][0].cpu())
                sim.append(score_per_video)
                video_results.append({'video_path': video_path, 'video_results': score_per_video})
    avg_score = np.mean(sim)
    return avg_score, video_results

def compute_temporal_style(json_dir, device, submodules_list):
    tokenizer = SimpleTokenizer(os.path.join(CACHE_DIR, "ViCLIP/bpe_simple_vocab_16e6.txt.gz"))
    viclip = ViCLIP(tokenizer= tokenizer, **submodules_list).to(device)
    _, video_dict = load_dimension_info(json_dir, dimension='temporal_style', lang='en')
    all_results, video_results = temporal_style(viclip, video_dict, tokenizer, device)
    return all_results, video_results