File size: 12,413 Bytes
04fbff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from functools import partial

from .modeling_finetune import Block, DropPath, Mlp, _cfg, PatchEmbed
from timm.models.registry import register_model
from timm.models.layers import trunc_normal_ as __call_trunc_normal_


def trunc_normal_(tensor, mean=0., std=1.):
    __call_trunc_normal_(tensor, mean=mean, std=std, a=-std, b=std)


# sin-cos position encoding
# https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31
def get_sinusoid_encoding_table(n_position, d_hid): 
    ''' Sinusoid position encoding table ''' 
    # TODO: make it with torch instead of numpy 
    def get_position_angle_vec(position): 
        return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] 

    sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) 
    sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i 
    sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 

    return  torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0) 


class PretrainVisionTransformerEncoder(nn.Module):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12,
                 num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
                 drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, num_frames=16, tubelet_size=2,
                 use_checkpoint=False, checkpoint_num=0, use_learnable_pos_emb=False, clip_return_layer=1,
                 clip_student_return_interval=1):
        super().__init__()
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, 
            num_frames=num_frames, tubelet_size=tubelet_size
        )
        num_patches = self.patch_embed.num_patches
        self.use_checkpoint = use_checkpoint
        self.checkpoint_num = checkpoint_num
        print(f'Use checkpoint: {use_checkpoint}')
        print(f'Checkpoint number: {checkpoint_num}')
        self.return_index = []
        for i in range(clip_return_layer):
            self.return_index.append(depth - int(i * clip_student_return_interval) - 1)
        print(f'Student return index: {self.return_index}')
        
        self.use_learnable_pos_emb = use_learnable_pos_emb
        if use_learnable_pos_emb:
            print('Use learnable position embedding')
            self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
        else:
            # sine-cosine positional embeddings 
            self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim)

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        self.blocks = nn.ModuleList([
            Block(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
                init_values=init_values)
            for i in range(depth)])
        self.norm =  norm_layer(embed_dim)
        self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()

        if use_learnable_pos_emb:
            trunc_normal_(self.pos_embed, std=.02)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.xavier_uniform_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def get_num_layers(self):
        return len(self.blocks)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x, mask):
        x = self.patch_embed(x)
        
        if self.use_learnable_pos_emb:
            x = x + self.pos_embed.type_as(x).to(x.device)
        else:
            x = x + self.pos_embed.type_as(x).to(x.device).clone().detach()

        B, _, C = x.shape
        x_vis = x[~mask].reshape(B, -1, C) # ~mask means visible
        x_clip_vis = []

        for idx, blk in enumerate(self.blocks):
            if self.use_checkpoint and idx < self.checkpoint_num:
                x_vis = checkpoint.checkpoint(blk, x_vis)
            else:
                x_vis = blk(x_vis)
            if idx in self.return_index:
                x_clip_vis.append(x_vis)

        x_vis = self.norm(x_vis)
        x_clip_vis = self.norm(torch.stack(x_clip_vis))
        return x_vis, x_clip_vis

    def forward(self, x, mask):
        x, x_clip_vis = self.forward_features(x, mask)
        x = self.head(x)
        x_clip_vis = self.head(x_clip_vis)
        return x_clip_vis


class Linear_Decoder(nn.Module):
    def __init__(self, num_classes=768, embed_dim=768, 
                 norm_layer=nn.LayerNorm, clip_norm_type='l2'):
        super().__init__()
        self.clip_norm_type = clip_norm_type
        print(f'Normalization Type: {clip_norm_type}')

        self.head = nn.Linear(embed_dim, num_classes)
        self.norm =  norm_layer(num_classes)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.xavier_uniform_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward(self, x):
        x = self.norm(self.head(x))

        if self.clip_norm_type == 'l2':
            x = x / x.norm(dim=-1, keepdim=True)
        elif self.clip_norm_type == 'none':
            pass
        else:
            raise NotImplementedError

        return x


class PretrainVisionTransformer(nn.Module):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """
    def __init__(self,
                 img_size=224, 
                 patch_size=16, 
                 encoder_in_chans=3, 
                 encoder_num_classes=0, 
                 encoder_embed_dim=768, 
                 encoder_depth=12,
                 encoder_num_heads=12, 
                 mlp_ratio=4., 
                 qkv_bias=False, 
                 qk_scale=None, 
                 drop_rate=0., 
                 attn_drop_rate=0.,
                 drop_path_rate=0., 
                 norm_layer=nn.LayerNorm, 
                 init_values=0.,
                 use_learnable_pos_emb=False,
                 use_checkpoint=False,
                 checkpoint_num=0,
                 num_frames=16,
                 tubelet_size=2,
                 # clip,
                 clip_decoder_embed_dim=768,
                 clip_output_dim=512,
                 clip_norm_type='l2',
                 clip_return_layer=1,
                 clip_student_return_interval=1,
                ):
        super().__init__()

        self.encoder = PretrainVisionTransformerEncoder(
            img_size=img_size, 
            patch_size=patch_size, 
            in_chans=encoder_in_chans, 
            num_classes=encoder_num_classes, 
            embed_dim=encoder_embed_dim, 
            depth=encoder_depth,
            num_heads=encoder_num_heads, 
            mlp_ratio=mlp_ratio, 
            qkv_bias=qkv_bias, 
            qk_scale=qk_scale, 
            drop_rate=drop_rate, 
            attn_drop_rate=attn_drop_rate,
            drop_path_rate=drop_path_rate, 
            norm_layer=norm_layer, 
            init_values=init_values,
            num_frames=num_frames,
            tubelet_size=tubelet_size,
            use_checkpoint=use_checkpoint,
            checkpoint_num=checkpoint_num,
            use_learnable_pos_emb=use_learnable_pos_emb,
            clip_return_layer=clip_return_layer,
            clip_student_return_interval=clip_student_return_interval
        )

        # CLIP decoder
        self.clip_decoder = nn.ModuleList([
            Linear_Decoder(
                num_classes=clip_output_dim, 
                embed_dim=clip_decoder_embed_dim, 
                norm_layer=norm_layer, 
                clip_norm_type=clip_norm_type
            ) for _ in range(clip_return_layer)
        ])

        self.clip_pos_embed = get_sinusoid_encoding_table(self.encoder.patch_embed.num_patches, clip_decoder_embed_dim)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.xavier_uniform_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def get_num_layers(self):
        return len(self.blocks)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token', 'mask_token', 'clip_mask_token', 'clip_pos_embed'}

    def forward(self, x, mask):
        x_clip_vis = self.encoder(x, mask) # [B, N_vis, C_e]
        
        # align CLIP
        K, B, _, C_CLIP = x_clip_vis.shape
        expand_clip_pos_embed = self.clip_pos_embed.repeat(B, 1, 1).type_as(x).to(x.device).clone().detach()
        clip_pos_emd_vis = expand_clip_pos_embed[~mask].view(B, -1, C_CLIP).unsqueeze(0).repeat(K, 1, 1, 1)
        x_clip_full = x_clip_vis + clip_pos_emd_vis # [K, B, N, C_d_clip]

        x_clip = []
        for idx, clip_decoder in enumerate(self.clip_decoder):
            x_clip.append(clip_decoder(x_clip_full[idx]))
        x_clip = torch.stack(x_clip) # align and normalize
        
        return x_clip
    

@register_model
def pretrain_umt_base_patch16_224(pretrained=False, **kwargs):
    model = PretrainVisionTransformer(
        img_size=224,
        patch_size=16, 
        encoder_embed_dim=768, 
        encoder_depth=12, 
        encoder_num_heads=12,
        encoder_num_classes=0,
        mlp_ratio=4, 
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), 
        **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        checkpoint = torch.load(
            kwargs["init_ckpt"], map_location="cpu"
        )
        model.load_state_dict(checkpoint["model"])
    return model
 

@register_model
def pretrain_umt_large_patch16_224(pretrained=False, **kwargs):
    model = PretrainVisionTransformer(
        img_size=224,
        patch_size=16, 
        encoder_embed_dim=1024, 
        encoder_depth=24, 
        encoder_num_heads=16,
        encoder_num_classes=0,
        mlp_ratio=4, 
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), 
        **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        checkpoint = torch.load(
            kwargs["init_ckpt"], map_location="cpu"
        )
        model.load_state_dict(checkpoint["model"])
    return model


if __name__ == '__main__':
    import time
    from fvcore.nn import FlopCountAnalysis
    from fvcore.nn import flop_count_table
    import numpy as np

    seed = 4217
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)

    model = pretrain_umt_base_patch16_224()

    # flops = FlopCountAnalysis(model, torch.rand(1, 3, 16, 224, 224))
    # s = time.time()
    # print(flop_count_table(flops, max_depth=1))
    # print(time.time()-s)
    mask = torch.cat([
        torch.ones(1, 8 * int(14 * 14 * 0.75)),
        torch.zeros(1, 8 * int(14 * 14 * 0.25)),
    ], dim=-1).to(torch.bool)
    print(model(torch.rand(1, 3, 16, 224, 224), mask)[1].shape)