yaoyugua commited on
Commit
ff265fd
·
1 Parent(s): 1141e6b
Files changed (1) hide show
  1. app.py +147 -75
app.py CHANGED
@@ -1,79 +1,151 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
- import openai
4
- from decouple import config
5
- import win32com.client
6
- import pythoncom
7
-
8
- """
9
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
10
- """
11
-
12
- # Configure OpenAI for speech-to-text
13
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
14
-
15
- def process_audio_and_respond(
16
- audio,
17
- history: list[tuple[str, str]],
18
- system_message,
19
- max_tokens,
20
- temperature,
21
- top_p,
22
- ):
23
- if audio is None:
24
- return "Please provide an audio input."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- # Convert speech to text using Whisper
27
- audio_file = open(audio, "rb")
28
- transcript = openai.Audio.transcribe("whisper-1", audio_file)
29
- user_message = transcript["text"]
30
-
31
- # Prepare messages for Zephyr
32
- messages = [{"role": "system", "content": system_message}]
33
- for user, assistant in history:
34
- if user:
35
- messages.append({"role": "user", "content": user})
36
- if assistant:
37
- messages.append({"role": "assistant", "content": assistant})
38
- messages.append({"role": "user", "content": user_message})
39
-
40
- # Get response from Zephyr
41
- response = ""
42
- for message in client.chat_completion(
43
- messages,
44
- max_tokens=max_tokens,
45
- stream=True,
46
- temperature=temperature,
47
- top_p=top_p,
48
- ):
49
- token = message.choices[0].delta.content
50
- response += token
51
-
52
- # Convert response to speech
53
- pythoncom.CoInitialize()
54
- speaker = win32com.client.Dispatch("SAPI.SpVoice")
55
- speaker.Speak(response)
56
-
57
- return user_message, response
58
-
59
- """
60
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
61
- """
62
- demo = gr.ChatInterface(
63
- process_audio_and_respond,
64
- additional_inputs=[
65
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
66
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
67
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
68
- gr.Slider(
69
- minimum=0.1,
70
- maximum=1.0,
71
- value=0.95,
72
- step=0.05,
73
- label="Top-p (nucleus sampling)",
74
- ),
75
- ],
76
- )
77
 
78
  if __name__ == "__main__":
79
- demo.launch()
 
1
  import gradio as gr
2
+ import edge_tts
3
+ import asyncio
4
+ import tempfile
5
+ import numpy as np
6
+ import soxr
7
+ from pydub import AudioSegment
8
+ import torch
9
+ import sentencepiece as spm
10
+ import onnxruntime as ort
11
+ from huggingface_hub import hf_hub_download, InferenceClient
12
+ import requests
13
+ from bs4 import BeautifulSoup
14
+ import urllib
15
+ import random
16
+ import re
17
+
18
+ # List of user agents to choose from for requests
19
+ _useragent_list = [
20
+ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
21
+ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
22
+ 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
23
+ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
24
+ 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
25
+ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
26
+ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
27
+ ]
28
+
29
+ def get_useragent():
30
+ """Returns a random user agent from the list."""
31
+ return random.choice(_useragent_list)
32
+
33
+ def extract_text_from_webpage(html_content):
34
+ """Extracts visible text from HTML content using BeautifulSoup."""
35
+ soup = BeautifulSoup(html_content, "html.parser")
36
+ # Remove unwanted tags
37
+ for tag in soup(["script", "style", "header", "footer", "nav"]):
38
+ tag.extract()
39
+ # Get the remaining visible text
40
+ visible_text = soup.get_text(strip=True)
41
+ visible_text = visible_text[:8000]
42
+ return visible_text
43
+
44
+ def search(term, num_results=2, timeout=5, ssl_verify=None):
45
+ """Performs a Google search and returns the results."""
46
+ escaped_term = urllib.parse.quote_plus(term)
47
+ all_results = []
48
+ resp = requests.get(
49
+ url="https://www.google.com/search",
50
+ headers={"User-Agent": get_useragent()}, # Set random user agent
51
+ params={
52
+ "q": term,
53
+ "num": num_results,
54
+ "udm": 14,
55
+ },
56
+ timeout=timeout,
57
+ verify=ssl_verify,
58
+ )
59
+ resp.raise_for_status() # Raise an exception if request fails
60
+ soup = BeautifulSoup(resp.text, "html.parser")
61
+ result_block = soup.find_all("div", attrs={"class": "g"})
62
+ for result in result_block:
63
+ link = result.find("a", href=True)
64
+ if link:
65
+ link = link["href"]
66
+ try:
67
+ # Fetch webpage content
68
+ webpage = requests.get(link, headers={"User-Agent": get_useragent()})
69
+ webpage.raise_for_status()
70
+ # Extract visible text from webpage
71
+ visible_text = extract_text_from_webpage(webpage.text)
72
+ all_results.append({"link": link, "text": visible_text})
73
+ except requests.exceptions.RequestException as e:
74
+ print(f"Error fetching or processing {link}: {e}")
75
+ all_results.append({"link": link, "text": None})
76
+ else:
77
+ all_results.append({"link": None, "text": None})
78
+ print(all_results)
79
+ return all_results
80
+
81
+ # Speech Recognition Model Configuration
82
+ model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
83
+ sample_rate = 16000
84
+
85
+ # Download preprocessor, encoder and tokenizer
86
+ preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
87
+ encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
88
+ tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
89
+
90
+ # Mistral Model Configuration
91
+ client1 = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
92
+ system_instructions1 = "<s>[SYSTEM] Answer as OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
93
+
94
+ def resample(audio_fp32, sr):
95
+ return soxr.resample(audio_fp32, sr, sample_rate)
96
+
97
+ def to_float32(audio_buffer):
98
+ return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
99
+
100
+ def transcribe(audio_path):
101
+ audio_file = AudioSegment.from_file(audio_path)
102
+ sr = audio_file.frame_rate
103
+ audio_buffer = np.array(audio_file.get_array_of_samples())
104
+
105
+ audio_fp32 = to_float32(audio_buffer)
106
+ audio_16k = resample(audio_fp32, sr)
107
+
108
+ input_signal = torch.tensor(audio_16k).unsqueeze(0)
109
+ length = torch.tensor(len(audio_16k)).unsqueeze(0)
110
+ processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
111
 
112
+ logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
113
+
114
+ blank_id = tokenizer.vocab_size()
115
+ decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
116
+ text = tokenizer.decode_ids(decoded_prediction)
117
+
118
+ return text
119
+
120
+ def model(text, web_search):
121
+ return "Bu Ang Zhang New Bee"
122
+ if web_search is True:
123
+ """Performs a web search, feeds the results to a language model, and returns the answer."""
124
+ web_results = search(text)
125
+ web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
126
+ formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]"
127
+ stream = client1.text_generation(formatted_prompt, max_new_tokens=300, stream=True, details=True, return_full_text=False)
128
+ return "".join([response.token.text for response in stream if response.token.text != "</s>"])
129
+ else:
130
+ formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
131
+ stream = client1.text_generation(formatted_prompt, max_new_tokens=300, stream=True, details=True, return_full_text=False)
132
+ return "".join([response.token.text for response in stream if response.token.text != "</s>"])
133
+
134
+ async def respond(audio, web_search):
135
+ user = transcribe(audio)
136
+ reply = model(user, web_search)
137
+ communicate = edge_tts.Communicate(reply)
138
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
139
+ tmp_path = tmp_file.name
140
+ await communicate.save(tmp_path)
141
+ return tmp_path
142
+
143
+ with gr.Blocks() as demo:
144
+ with gr.Row():
145
+ web_search = gr.Checkbox(label="Web Search", value=False)
146
+ input = gr.Audio(label="User Input", sources="microphone", type="filepath")
147
+ output = gr.Audio(label="AI", autoplay=True)
148
+ gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149
 
150
  if __name__ == "__main__":
151
+ demo.queue(max_size=200).launch()