|
import os |
|
import random |
|
import zipfile |
|
import findfile |
|
import PIL.Image |
|
import autocuda |
|
from pyabsa.utils.pyabsa_utils import fprint |
|
|
|
try: |
|
for z_file in findfile.find_cwd_files(and_key=['.zip'], |
|
exclude_key=['.ignore', 'git', 'SuperResolutionAnimeDiffusion'], |
|
recursive=10): |
|
fprint(f"Extracting {z_file}...") |
|
with zipfile.ZipFile(z_file, 'r') as zip_ref: |
|
zip_ref.extractall(os.path.dirname(z_file)) |
|
except Exception as e: |
|
os.system('unzip random_examples.zip') |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
UNet2DConditionModel, |
|
StableDiffusionPipeline, |
|
StableDiffusionImg2ImgPipeline, |
|
DPMSolverMultistepScheduler, |
|
) |
|
import gradio as gr |
|
import torch |
|
from PIL import Image |
|
import utils |
|
import datetime |
|
import time |
|
import psutil |
|
from Waifu2x.magnify import ImageMagnifier |
|
from RealESRGANv030.interface import realEsrgan |
|
|
|
magnifier = ImageMagnifier() |
|
|
|
start_time = time.time() |
|
is_colab = utils.is_google_colab() |
|
|
|
CUDA_VISIBLE_DEVICES = "" |
|
device = autocuda.auto_cuda() |
|
|
|
dtype = torch.float16 if device != "cpu" else torch.float32 |
|
|
|
|
|
|
|
class Model: |
|
def __init__(self, name, path="", prefix=""): |
|
self.name = name |
|
self.path = path |
|
self.prefix = prefix |
|
self.pipe_t2i = None |
|
self.pipe_i2i = None |
|
|
|
|
|
models = [ |
|
|
|
Model("anything v5", "stablediffusionapi/anything-v5", "anything v5 style"), |
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scheduler = DPMSolverMultistepScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
num_train_timesteps=1000, |
|
trained_betas=None, |
|
predict_epsilon=True, |
|
thresholding=False, |
|
algorithm_type="dpmsolver++", |
|
solver_type="midpoint", |
|
solver_order=2, |
|
|
|
) |
|
|
|
custom_model = None |
|
if is_colab: |
|
models.insert(0, Model("Custom model")) |
|
custom_model = models[0] |
|
|
|
last_mode = "txt2img" |
|
current_model = models[1] if is_colab else models[0] |
|
current_model_path = current_model.path |
|
|
|
if is_colab: |
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
current_model.path, |
|
torch_dtype=dtype, |
|
scheduler=scheduler, |
|
safety_checker=lambda images, clip_input: (images, False), |
|
) |
|
|
|
else: |
|
print(f"{datetime.datetime.now()} Downloading vae...") |
|
vae = AutoencoderKL.from_pretrained( |
|
current_model.path, subfolder="vae", torch_dtype=dtype |
|
) |
|
for model in models: |
|
try: |
|
print(f"{datetime.datetime.now()} Downloading {model.name} model...") |
|
unet = UNet2DConditionModel.from_pretrained( |
|
model.path, subfolder="unet", torch_dtype=dtype |
|
) |
|
model.pipe_t2i = StableDiffusionPipeline.from_pretrained( |
|
model.path, |
|
unet=unet, |
|
vae=vae, |
|
torch_dtype=dtype, |
|
scheduler=scheduler, |
|
safety_checker=None, |
|
) |
|
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained( |
|
model.path, |
|
unet=unet, |
|
vae=vae, |
|
torch_dtype=dtype, |
|
scheduler=scheduler, |
|
safety_checker=None, |
|
) |
|
except Exception as e: |
|
print( |
|
f"{datetime.datetime.now()} Failed to load model " |
|
+ model.name |
|
+ ": " |
|
+ str(e) |
|
) |
|
models.remove(model) |
|
pipe = models[0].pipe_t2i |
|
|
|
|
|
|
|
if torch.cuda.is_available(): |
|
pipe = pipe.to(device) |
|
|
|
|
|
|
|
|
|
|
|
def error_str(error, title="Error"): |
|
return ( |
|
f"""#### {title} |
|
{error}""" |
|
if error |
|
else "" |
|
) |
|
|
|
|
|
def custom_model_changed(path): |
|
models[0].path = path |
|
global current_model |
|
current_model = models[0] |
|
|
|
|
|
def on_model_change(model_name): |
|
prefix = ( |
|
'Enter prompt. "' |
|
+ next((m.prefix for m in models if m.name == model_name), None) |
|
+ '" is prefixed automatically' |
|
if model_name != models[0].name |
|
else "Don't forget to use the custom model prefix in the prompt!" |
|
) |
|
|
|
return ( |
|
gr.update(visible=model_name == models[0].name), |
|
gr.update(placeholder=prefix), |
|
) |
|
|
|
|
|
def inference( |
|
model_name, |
|
prompt, |
|
guidance, |
|
steps, |
|
width=512, |
|
height=512, |
|
seed=0, |
|
img=None, |
|
strength=0.5, |
|
neg_prompt="", |
|
scale="ESRGAN4x", |
|
scale_factor=2, |
|
): |
|
fprint(psutil.virtual_memory()) |
|
|
|
fprint(f"Prompt: {prompt}") |
|
global current_model |
|
for model in models: |
|
if model.name == model_name: |
|
current_model = model |
|
model_path = current_model.path |
|
|
|
generator = torch.Generator(device).manual_seed(seed) if seed != 0 else None |
|
|
|
try: |
|
if img is not None: |
|
return ( |
|
img_to_img( |
|
model_path, |
|
prompt, |
|
neg_prompt, |
|
img, |
|
strength, |
|
guidance, |
|
steps, |
|
width, |
|
height, |
|
generator, |
|
scale, |
|
scale_factor, |
|
), |
|
None, |
|
) |
|
else: |
|
return ( |
|
txt_to_img( |
|
model_path, |
|
prompt, |
|
neg_prompt, |
|
guidance, |
|
steps, |
|
width, |
|
height, |
|
generator, |
|
scale, |
|
scale_factor, |
|
), |
|
None, |
|
) |
|
except Exception as e: |
|
return None, error_str(e) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def txt_to_img( |
|
model_path, |
|
prompt, |
|
neg_prompt, |
|
guidance, |
|
steps, |
|
width, |
|
height, |
|
generator, |
|
scale, |
|
scale_factor, |
|
): |
|
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}") |
|
|
|
global last_mode |
|
global pipe |
|
global current_model_path |
|
if model_path != current_model_path or last_mode != "txt2img": |
|
current_model_path = model_path |
|
|
|
if is_colab or current_model == custom_model: |
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
current_model_path, |
|
torch_dtype=dtype, |
|
scheduler=scheduler, |
|
safety_checker=lambda images, clip_input: (images, False), |
|
) |
|
else: |
|
|
|
pipe = current_model.pipe_t2i |
|
|
|
if torch.cuda.is_available(): |
|
pipe = pipe.to(device) |
|
last_mode = "txt2img" |
|
|
|
prompt = current_model.prefix + prompt |
|
result = pipe( |
|
prompt, |
|
negative_prompt=neg_prompt, |
|
|
|
num_inference_steps=int(steps), |
|
guidance_scale=guidance, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
) |
|
|
|
|
|
|
|
if scale_factor > 1: |
|
if scale == "ESRGAN4x": |
|
fp32 = True if device == "cpu" else False |
|
result.images[0] = realEsrgan( |
|
input_dir=result.images[0], |
|
suffix="", |
|
output_dir="imgs", |
|
fp32=fp32, |
|
outscale=scale_factor, |
|
)[0] |
|
else: |
|
result.images[0] = magnifier.magnify( |
|
result.images[0], scale_factor=scale_factor |
|
) |
|
|
|
result.images[0].save( |
|
"imgs/result-{}.png".format(datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) |
|
) |
|
return replace_nsfw_images(result) |
|
|
|
|
|
def img_to_img( |
|
model_path, |
|
prompt, |
|
neg_prompt, |
|
img, |
|
strength, |
|
guidance, |
|
steps, |
|
width, |
|
height, |
|
generator, |
|
scale, |
|
scale_factor, |
|
): |
|
fprint(f"{datetime.datetime.now()} img_to_img, model: {model_path}") |
|
|
|
global last_mode |
|
global pipe |
|
global current_model_path |
|
if model_path != current_model_path or last_mode != "img2img": |
|
current_model_path = model_path |
|
|
|
if is_colab or current_model == custom_model: |
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( |
|
current_model_path, |
|
torch_dtype=dtype, |
|
scheduler=scheduler, |
|
safety_checker=lambda images, clip_input: (images, False), |
|
) |
|
else: |
|
|
|
pipe = current_model.pipe_i2i |
|
|
|
if torch.cuda.is_available(): |
|
pipe = pipe.to(device) |
|
last_mode = "img2img" |
|
|
|
prompt = current_model.prefix + prompt |
|
ratio = min(height / img.height, width / img.width) |
|
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS) |
|
result = pipe( |
|
prompt, |
|
negative_prompt=neg_prompt, |
|
|
|
image=img, |
|
num_inference_steps=int(steps), |
|
strength=strength, |
|
guidance_scale=guidance, |
|
|
|
|
|
generator=generator, |
|
) |
|
if scale_factor > 1: |
|
if scale == "ESRGAN4x": |
|
fp32 = True if device == "cpu" else False |
|
result.images[0] = realEsrgan( |
|
input_dir=result.images[0], |
|
suffix="", |
|
output_dir="imgs", |
|
fp32=fp32, |
|
outscale=scale_factor, |
|
)[0] |
|
else: |
|
result.images[0] = magnifier.magnify( |
|
result.images[0], scale_factor=scale_factor |
|
) |
|
|
|
result.images[0].save( |
|
"imgs/result-{}.png".format(datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) |
|
) |
|
return replace_nsfw_images(result) |
|
|
|
|
|
def replace_nsfw_images(results): |
|
if is_colab: |
|
return results.images[0] |
|
if hasattr(results, "nsfw_content_detected") and results.nsfw_content_detected: |
|
for i in range(len(results.images)): |
|
if results.nsfw_content_detected[i]: |
|
results.images[i] = Image.open("nsfw.png") |
|
return results.images[0] |
|
|
|
|
|
css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem} |
|
""" |
|
with gr.Blocks(css=css) as demo: |
|
if not os.path.exists("imgs"): |
|
os.mkdir("imgs") |
|
|
|
gr.Markdown("# Super Resolution Anime Diffusion") |
|
gr.Markdown( |
|
"## Author: [yangheng95](https://github.com/yangheng95) Github:[Github](https://github.com/yangheng95/stable-diffusion-webui)" |
|
) |
|
gr.Markdown( |
|
"### This demo is running on a CPU, so it will take at least 20 minutes. " |
|
"If you have a GPU, you can clone from [Github](https://github.com/yangheng95/SuperResolutionAnimeDiffusion) and run it locally." |
|
) |
|
gr.Markdown( |
|
"### FYI: to generate a 512*512 image and magnify 4x, it only takes 5~8 seconds on a RTX 2080 GPU" |
|
) |
|
gr.Markdown( |
|
"### You can duplicate this demo on HuggingFace Spaces, click [here](https://huggingface.co./spaces/yangheng/Super-Resolution-Anime-Diffusion?duplicate=true)" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=55): |
|
with gr.Group(): |
|
gr.Markdown("Text to image") |
|
|
|
model_name = gr.Dropdown( |
|
label="Model", |
|
choices=[m.name for m in models], |
|
value=current_model.name, |
|
) |
|
|
|
with gr.Box(visible=False) as custom_model_group: |
|
custom_model_path = gr.Textbox( |
|
label="Custom model path", |
|
placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion", |
|
interactive=True, |
|
) |
|
gr.HTML( |
|
"<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>" |
|
) |
|
|
|
with gr.Row(): |
|
prompt = gr.Textbox( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=2, |
|
placeholder="Enter prompt. Style applied automatically", |
|
).style(container=False) |
|
with gr.Row(): |
|
generate = gr.Button(value="Generate") |
|
|
|
with gr.Row(): |
|
with gr.Group(): |
|
neg_prompt = gr.Textbox( |
|
label="Negative prompt", |
|
value="bad result, worst, random, invalid, inaccurate, imperfect, blurry, deformed," |
|
" disfigured, mutation, mutated, ugly, out of focus, bad anatomy, text, error," |
|
" extra digit, fewer digits, worst quality, low quality, normal quality, noise, " |
|
"jpeg artifact, compression artifact, signature, watermark, username, logo, " |
|
"low resolution, worst resolution, bad resolution, normal resolution, bad detail," |
|
" bad details, bad lighting, bad shadow, bad shading, bad background," |
|
" worst background.", |
|
) |
|
|
|
image_out = gr.Image(height="auto", width="auto") |
|
error_output = gr.Markdown() |
|
|
|
with gr.Row(): |
|
gr.Markdown( |
|
"# Random Image Generation Preview (512*768)x4 magnified" |
|
) |
|
for f_img in findfile.find_cwd_files(".png", recursive=2): |
|
with gr.Row(): |
|
image = gr.Image(height=512, value=PIL.Image.open(f_img)) |
|
|
|
|
|
|
|
|
|
with gr.Column(scale=45): |
|
with gr.Group(): |
|
gr.Markdown("Image to Image") |
|
|
|
with gr.Row(): |
|
with gr.Group(): |
|
image = gr.Image( |
|
label="Image", height=256, tool="editor", type="pil" |
|
) |
|
strength = gr.Slider( |
|
label="Transformation strength", |
|
minimum=0, |
|
maximum=1, |
|
step=0.01, |
|
value=0.5, |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Group(): |
|
|
|
|
|
with gr.Row(): |
|
guidance = gr.Slider( |
|
label="Guidance scale", value=7.5, maximum=15 |
|
) |
|
steps = gr.Slider( |
|
label="Steps", value=15, minimum=2, maximum=75, step=1 |
|
) |
|
|
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
value=512, |
|
minimum=64, |
|
maximum=1024, |
|
step=8, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
value=768, |
|
minimum=64, |
|
maximum=1024, |
|
step=8, |
|
) |
|
with gr.Row(): |
|
scale = gr.Radio( |
|
label="Scale", |
|
choices=["Waifu2x", "ESRGAN4x"], |
|
value="Waifu2x", |
|
) |
|
with gr.Row(): |
|
scale_factor = gr.Slider( |
|
1, |
|
8, |
|
label="Scale factor (to magnify image) (1, 2, 4, 8)", |
|
value=1, |
|
step=1, |
|
) |
|
|
|
seed = gr.Slider( |
|
0, 2147483647, label="Seed (0 = random)", value=0, step=1 |
|
) |
|
|
|
if is_colab: |
|
model_name.change( |
|
on_model_change, |
|
inputs=model_name, |
|
outputs=[custom_model_group, prompt], |
|
queue=False, |
|
) |
|
custom_model_path.change( |
|
custom_model_changed, inputs=custom_model_path, outputs=None |
|
) |
|
|
|
|
|
gr.Markdown( |
|
"### based on [Anything V5]" |
|
) |
|
|
|
inputs = [ |
|
model_name, |
|
prompt, |
|
guidance, |
|
steps, |
|
width, |
|
height, |
|
seed, |
|
image, |
|
strength, |
|
neg_prompt, |
|
scale, |
|
scale_factor, |
|
] |
|
outputs = [image_out, error_output] |
|
prompt.submit(inference, inputs=inputs, outputs=outputs) |
|
generate.click(inference, inputs=inputs, outputs=outputs, api_name="generate") |
|
|
|
prompt_keys = [ |
|
"girl", |
|
"lovely", |
|
"cute", |
|
"beautiful eyes", |
|
"cumulonimbus clouds", |
|
random.choice(["dress"]), |
|
random.choice(["white hair"]), |
|
random.choice(["blue eyes"]), |
|
random.choice(["flower meadow"]), |
|
random.choice(["Elif", "Angel"]), |
|
] |
|
prompt.value = ",".join(prompt_keys) |
|
ex = gr.Examples( |
|
[ |
|
[models[0].name, prompt.value, 7.5, 15], |
|
], |
|
inputs=[model_name, prompt, guidance, steps, seed], |
|
outputs=outputs, |
|
fn=inference, |
|
cache_examples=False, |
|
) |
|
|
|
print(f"Space built in {time.time() - start_time:.2f} seconds") |
|
|
|
if not is_colab: |
|
demo.queue(concurrency_count=2) |
|
demo.launch(debug=is_colab, enable_queue=True, share=is_colab) |