File size: 8,302 Bytes
1d42b83
 
 
 
9a59d7a
 
 
 
 
 
 
1d42b83
 
 
 
 
 
 
 
c431f44
9d3974d
c431f44
8cf99f3
 
c431f44
 
 
 
d65dd81
6193207
 
d65dd81
f2977fa
5b067c5
a2468a2
8cf99f3
243e8f7
 
5cec2d8
243e8f7
 
b5f9a96
243e8f7
 
 
 
 
 
 
 
 
 
 
72dd6ac
 
 
 
 
 
 
 
 
 
 
 
 
243e8f7
 
5b067c5
 
c431f44
 
5b067c5
c411dc2
c431f44
 
 
 
 
a3b4f26
 
c431f44
9a59d7a
6ee92d0
1fb1f41
243e8f7
1d42b83
26889b2
9a59d7a
 
 
 
 
 
 
 
243e8f7
26889b2
243e8f7
 
5cec2d8
 
 
 
 
 
 
 
 
 
 
1d42b83
 
 
 
 
 
 
 
a3d1262
5cec2d8
1d42b83
 
 
 
6801c63
1d42b83
 
a3d1262
1d42b83
 
 
2cdead4
1d42b83
26889b2
c431f44
51aabb2
c431f44
5b067c5
51aabb2
5b067c5
26889b2
1d42b83
26889b2
7fa027b
a3d1262
7fa027b
a70df5d
1d42b83
243e8f7
 
 
 
 
 
1d42b83
 
 
 
 
 
 
 
 
a00a3a2
1d42b83
a3b4f26
1d42b83
 
 
 
 
 
 
 
a3b4f26
1d42b83
26889b2
c431f44
 
 
 
 
 
 
 
5b067c5
 
 
 
 
 
 
 
 
26889b2
b5f9a96
67aa591
5099b54
05b9609
b5f9a96
05b9609
1d42b83
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import string
import gradio as gr
import requests
import torch
from models.VLE import VLEForVQA, VLEProcessor, VLEForVQAPipeline
from PIL import Image

model_name="hfl/vle-base-for-vqa"
model = VLEForVQA.from_pretrained(model_name)
vle_processor = VLEProcessor.from_pretrained(model_name)
vqa_pipeline = VLEForVQAPipeline(model=model, device='cpu', vle_processor=vle_processor)


from transformers import BlipForQuestionAnswering, BlipProcessor

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large")
model_vqa = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large").to(device)

from transformers import BlipProcessor, BlipForConditionalGeneration

cap_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
cap_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")



def caption(input_image):
    inputs = cap_processor(input_image, return_tensors="pt")
    inputs["num_beams"] = 1
    inputs['num_return_sequences'] =1
    out = cap_model.generate(**inputs)
    return "\n".join(cap_processor.batch_decode(out, skip_special_tokens=True))
import openai
import os
openai.api_key= os.getenv('openai_appkey') 
def gpt3_short(question,vqa_answer,caption):
    vqa_answer,vqa_score=vqa_answer
    prompt="prompt: This is the caption of a picture: "+caption+". Question: "+question+" VQA model predicts:"+"A: "+vqa_answer[0]+"socre:"+str(vqa_score[0])+\
           " B: "+vqa_answer[1]+" score:"+str(vqa_score[1])+" C: "+vqa_answer[2]+" score:"+str(vqa_score[2])+\
            " D: "+vqa_answer[3]+'score:'+str(vqa_score[3])+\
           ". Choose A if it is not in conflict with the description of the picture and A's score is bigger than 0.8; otherwise choose the B, C or D based on the description. Answer with A or B or C or D."
    
    # prompt=caption+"\n"+question+"\n"+vqa_answer+"\n Tell me the right answer."
    response = openai.Completion.create(
    engine="text-davinci-003",
    prompt=prompt,
    max_tokens=30,
    n=1,
    stop=None,
    temperature=0.7,
    )
    answer = response.choices[0].text.strip()

    llm_ans=answer
    choice=set(["A","B","C","D"])
    llm_ans=llm_ans.replace("\n"," ").replace(":"," ").replace("."," " ).replace(","," ")
    sllm_ans=llm_ans.split(" ")
    for cho in sllm_ans:
      if cho in choice:
         llm_ans=cho
         break
    if llm_ans not in choice:
        llm_ans="A"
    llm_ans=vqa_answer[ord(llm_ans)-ord("A")]
    answer=llm_ans
    
    return answer
def gpt3(question,vqa_answer,caption):
    prompt=caption+"\n"+question+"\n"+vqa_answer+"\n Tell me the right answer."
    response = openai.Completion.create(
    engine="text-davinci-003",
    prompt=prompt,
    max_tokens=30,
    n=1,
    stop=None,
    temperature=0.7,
    )
    answer = response.choices[0].text.strip()
    # return "input_text:\n"+prompt+"\n\n output_answer:\n"+answer
    return answer

def vle(input_image,input_text):
    vqa_answers = vqa_pipeline({"image":input_image, "question":input_text}, top_k=4)
    # return [" ".join([str(value) for key,value in vqa.items()] )for vqa in vqa_answers]
    return [vqa['answer'] for vqa in vqa_answers],[vqa['score'] for vqa in vqa_answers]
def inference_chat(input_image,input_text):
    cap=caption(input_image)
    # inputs = processor(images=input_image, text=input_text,return_tensors="pt")
    # inputs["max_length"] = 10
    # inputs["num_beams"] = 5
    # inputs['num_return_sequences'] =4
    # out = model_vqa.generate(**inputs)
    # out=processor.batch_decode(out, skip_special_tokens=True)

    out=vle(input_image,input_text)
    vqa="\n".join(out[0])
    gpt3_out=gpt3(input_text,vqa,cap)
    gpt3_out1=gpt3_short(input_text,out,cap)
    return out[0][0], gpt3_out,gpt3_out1
title = """# VQA with VLE and LLM"""
description = """We demonstrate three visual question answering systems built with VLE and LLM:

* VQA: The image and the question are fed into a VQA model (VLEForVQA) and the model predicts the answer.

* VQA + LLM (short answer): The captioning model generates a caption of the image. We feed the caption, the question, and the answer candidates predicted by the VQA model to the LLM, and ask the LLM to select the most reasonable answer from the candidates.

* VQA + LLM (long answer): The pipeline is the same as VQA + LLM (short answer), except that the answer is freely generated by the LLM and not limited to VQA candidates.

For more details about VLE and the VQA pipeline, see [http://vle.hfl-rc.com](http://vle.hfl-rc.com)"""

with gr.Blocks(
    css="""
    .message.svelte-w6rprc.svelte-w6rprc.svelte-w6rprc {font-size: 20px; margin-top: 20px}
    #component-21 > div.wrap.svelte-w6rprc {height: 600px;}
    """
) as iface:
    state = gr.State([])
    #caption_output = None
    gr.Markdown(title)
    gr.Markdown(description)
    #gr.Markdown(article)

    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.Image(type="pil",label="VQA Image Input")
            with gr.Row():
                with gr.Column(scale=1):
                    chat_input = gr.Textbox(lines=1, label="VQA Question Input")
                    with gr.Row():
                        clear_button = gr.Button(value="Clear", interactive=True)
                        submit_button = gr.Button(
                            value="Submit", interactive=True, variant="primary"
                        )
                        '''
                    cap_submit_button = gr.Button(
                            value="Submit_CAP", interactive=True, variant="primary"
                        )
                    gpt3_submit_button = gr.Button(
                            value="Submit_GPT3", interactive=True, variant="primary"
                        )
                        '''
        with gr.Column():
            caption_output = gr.Textbox(lines=0, label="VQA ")
            caption_output_v1 = gr.Textbox(lines=0, label="VQA+LLM (short answer)")
            
            gpt3_output_v1 = gr.Textbox(lines=0, label="VQA+LLM (long answer)")
            
            
        # image_input.change(
        #     lambda: ("", [],"","",""),
        #     [],
        #     [ caption_output, state,caption_output,gpt3_output_v1,caption_output_v1],
        #     queue=False,
        # )
        chat_input.submit(
                    inference_chat,
                    [
                        image_input,
                        chat_input,
                    ],
                    [ caption_output],
                )
        clear_button.click(
                        lambda: ("", [],"","",""),
                        [],
                        [chat_input,  state,caption_output,gpt3_output_v1,caption_output_v1],
                        queue=False,
                    )
        submit_button.click(
                        inference_chat,
                        [
                            image_input,
                            chat_input,
                        ],
                        [caption_output,gpt3_output_v1,caption_output_v1],
                    )
        '''
        cap_submit_button.click(
                        caption,
                        [
                            image_input,
                   
                        ],
                        [caption_output_v1],
                    )
        gpt3_submit_button.click(
                        gpt3,
                        [
                            chat_input,
                           caption_output ,
                            caption_output_v1,
                        ],
                        [gpt3_output_v1],
                    )
        '''
    examples=[['bird.jpeg',"How many birds are there in the tree?","2","2","2"],
              ['qa9.jpg',"What type of vehicle is being pulled by the horses ?",'carriage','sled','Sled'],
                ['upload4.jpg',"What is this old man doing?","fishing","fishing","Fishing"]]
    examples = gr.Examples(
       examples=examples,inputs=[image_input, chat_input,caption_output,caption_output_v1,gpt3_output_v1],
    )

iface.queue(concurrency_count=1, api_open=False, max_size=10)
iface.launch(enable_queue=True)